Skip to main content
Log in

Discrete-Space Systems of Partial Dynamic Equations and Discrete-Space Wave Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the well-posedness of initial-value problems for systems of partial dynamic equations with discrete space and arbitrary time domain. We also present the superposition principle for infinite linear combinations of solutions. As an example, we consider the discrete-space wave equation, which is equivalent to a pair of first-order equations. We provide a general method for finding fundamental solutions and illustrate it on several examples of time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlbrandt, C., Morian, C.: Partial differential equations on time scales. J. Comput. Appl. Math. 141, 35–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, D.R., Avery, R.I., Davis, J.M.: Existence and uniqueness of solutions to discrete diffusion equations. Comput. Math. Appl. 45, 1075–1085 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  4. Campbell, J.: The SMM model as a boundary value problem using the discrete diffusion equation. Theor. Populat. Biol. 72(4), 539–546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daletskij, Y.L., Krejn, M.G.: Stability of solutions of differential equations in Banach space. American Mathematical Society. Rhode Island, United States (1974)

  6. Deimling, K.: Ordinary Differential Equations in Banach Spaces. Springer-Verlag, Berlin (1977)

    Book  MATH  Google Scholar 

  7. Friesl, M., Slavík, A., Stehlík, P.: Discrete-space partial dynamic equations on time scales and applications to stochastic processes. Appl. Math. Lett. 37, 86–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hilger, S.: Analysis on measure chains: a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoffacker, J.: Basic partial dynamic equations on time scales. J. Differ. Equ. Appl. 8(4), 307–319 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jackson, B.: Partial dynamic equations on time scales. J. Comput. Appl. Math. 186, 391–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue. Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, report no. 98-17 (1998)

  12. Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12(3), 234–254 (1990)

    Article  Google Scholar 

  13. Liu, H.: The method of finding solutions of partial dynamic equations on time scales. Adv. Differ. Equ. 2013, 141 (2013)

    Article  MathSciNet  Google Scholar 

  14. Mozyrska, D., Bartosiewicz, Z.: Observability of a class of linear dynamic infinite systems on time scales. Proc. Estonian Acad. Sci. Phys. Math. 56(4), 347–358 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. eds.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Online version at http://dlmf.nist.gov/

  16. Samoilenko, A.M., Teplinskii, Yu.V.: Countable Systems of Differential Equations. VSP, Utrecht (2003)

  17. Slavík, A., Stehlík, P.: Dynamic diffusion-type equations on discrete-space domains. J. Math. Anal. Appl. 427, 525–545 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Slavík, A., Stehlík, P.: Explicit solutions to dynamic diffusion-type equations and their time integrals. Appl. Math. Comput. 234, 486–505 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Slavík, A.: Mixing problems with many tanks. Am. Math. Monthly 120(9), 806–821 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stehlík, P., Volek, J.: Transport equation on semidiscrete domains and Poisson-Bernoulli processes. J. Differ. Equ. Appl. 19(3), 439–456 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986)

    MATH  Google Scholar 

  22. Volek, J.: Maximum and minimum principles for nonlinear transport equations on discrete-space domains. Electron. J. Differ. Equ. 78, 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The paper was supported by Grant No. GA15-076905 of the Czech Science Foundation. The author is grateful to the anonymous referee for several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Slavík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavík, A. Discrete-Space Systems of Partial Dynamic Equations and Discrete-Space Wave Equation. Qual. Theory Dyn. Syst. 16, 299–315 (2017). https://doi.org/10.1007/s12346-016-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-016-0193-0

Keywords

Mathematics Subject Classification

Navigation