Skip to main content
Log in

Neue Entwicklungen in der Therapie maligner hämatologischer Erkrankungen

New developments in the therapy of malignant hematologic diseases

  • Fokus
  • Published:
Forum Aims and scope

Zusammenfassung

Das Spektrum von molekular zielgerichteten Therapieprinzipien bei malignen hämatologischen Erkrankungen hat sich, ausgehend von Modellerkrankungen wie z. B. der chronischen myeloischen Leukämie (CML), in den vergangenen Jahren wesentlich verbreitert und gleichzeitig deutlich vertieft. Dies ist zum einen dem rapiden Erkenntniszuwachs bezüglich des Verständnisses der molekularpathogenetischen Zusammenhänge bei der Entstehung und Progression dieser Erkrankungen, zum anderen aber auch der zunehmenden effektiveren Umsetzung dieser Erkenntnisse in klinisch nutzbare therapeutische Prinzipien zu verdanken. Der vorliegende Beitrag gibt eine Übersicht über aktuelle molekular zielgerichtet wirksame Therapeutika im Bereich ausgewählter myeloischer und lymphatischer Neoplasien, die entweder in jüngerer Zeit bereits zugelassen wurden oder deren Zulassung in absehbarer Zeit zu erwarten ist. Zusätzlich werden am Beispiel einiger derzeit in präklinischer oder früher klinischer Prüfung befindlicher Substanzen mögliche zukünftige Entwicklungslinien aufgezeigt.

Abstract

Over the past 10 years substantial progress has been made in the identification of novel therapeutic targets and the development of molecularly targeted agents for the treatment of hematologic malignancies. This process was fostered by continuous methodological improvements allowing a deeper understanding of the principles and networks underlying disease pathogenesis first in model disorders, such as chronic myeloid leukemia (CML) but now expanding to the whole spectrum of myeloid and lymphoid neoplasms. Moreover, recently these insights have more effectively been translated into clinically approved therapeutic principles, e.g. agents targeting components of the B-cell receptor signaling pathway in lymphoid malignancies. This review focuses on novel targeted agents for the treatment of hematologic malignancies that have either already been clinically approved or show promise for rapid translation to the clinic in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Daley GQ, Etten RA van, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  CAS  PubMed  Google Scholar 

  2. Brümmendorf TH, Koschmieder S (Hrsg) (2014) Molekular zielgerichtete Therapie der chronischen myeloischen Leukämie (CML). Uni-Med, Bremen, S 136

  3. Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian H et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551

    Article  PubMed  Google Scholar 

  5. Talpaz M et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541

    Article  CAS  PubMed  Google Scholar 

  6. Cortes JE et al (2012) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol 30:3486–3492

    Article  CAS  PubMed  Google Scholar 

  7. Cortes JE et al (2012) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367(22):2075–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Balabanov S, Braig M, Brummendorf TH (2014) Resistance against tyrosine kinase inhibitors in chronic myelogeneous leukemia. Drug Discovery Today: Technologies 2014:89–99

  9. Mahon FX et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035

    Article  CAS  PubMed  Google Scholar 

  10. Nangalia J et al (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Klampfl T et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369:2379–2390

    Article  CAS  PubMed  Google Scholar 

  12. Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  CAS  PubMed  Google Scholar 

  13. Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19:1933–1940

    Article  CAS  PubMed  Google Scholar 

  14. Harrison C et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366:787–798

    Article  CAS  PubMed  Google Scholar 

  15. Verstovsek S et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366:799–807

    Article  CAS  PubMed  Google Scholar 

  16. Guglielmelli P et al (2014) Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood 123:2157–2160

    Article  CAS  PubMed  Google Scholar 

  17. Verstovsek S et al (2014) Phase 2 trial of PRM-151, an antifibrotic agent, in patients with myelofibrosis: stage 1 results. J Clin Oncol 32 (Suppl), Abstract 7114

  18. Brunet S et al (2012) Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol 30:735–741

    Article  PubMed  Google Scholar 

  19. Schaich M, Ehninger G (2012) Individualisierte Therapie der akuten myeloischen Leukämie. Onkologe 18:1084–1092

    Article  Google Scholar 

  20. Cortes JE et al (2013) Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol 31:3681–3687

    Article  CAS  PubMed  Google Scholar 

  21. Smith CC et al (2014) Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci USA 111:5319–5324

    Article  CAS  PubMed  Google Scholar 

  22. Galanis A et al (2014) Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 123:94–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zimmerman EI et al (2013) Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. Blood 122:3607–3615

    Article  CAS  PubMed  Google Scholar 

  24. Fischer T et al (2010) Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 28:4339–4345

    Article  CAS  PubMed  Google Scholar 

  25. Chaturvedi A et al (2013) Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122:2877–2887

    Article  CAS  PubMed  Google Scholar 

  26. Im AP et al (2014) DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia (E-pub ahead of print)

  27. Kats LM et al (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14:329–341

    Article  CAS  PubMed  Google Scholar 

  28. Khasawneh MK, Abdel-Wahab O (2014) Recent discoveries in molecular characterization of acute myeloid leukemia. Curr Hematol Malig Rep 9:93–99

    Article  PubMed  Google Scholar 

  29. McKenney AS, Levine RL (2013) Isocitrate dehydrogenase mutations in leukemia. J Clin Invest 123:3672–3677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kantarjian HM et al (2012) Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 30:2670–2677

    Article  CAS  PubMed  Google Scholar 

  31. Scandura JM et al (2011) Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood 118:1472–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fenaux P et al (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28:562–569

    Article  CAS  PubMed  Google Scholar 

  33. Smith BD et al (2014) Survival and hospitalization among patients with acute myeloid leukemia treated with azacitidine or decitabine in a large managed care population: a real-world, retrospective, claims-based, comparative analysis. Exp Hematol Oncol 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zuber J et al (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Foa R et al (2011) Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 118:6521–6528

    Article  CAS  PubMed  Google Scholar 

  36. Ottmann O et al (2007) Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood 110:2309–2315

    Article  CAS  PubMed  Google Scholar 

  37. Wassmann B et al (2003) A randomized multicenter open label phase II study to determine the safety and efficacy of induction therapy with imatinib (Glivec, formerly STI571) in comparison with standard induction chemotherapy in elderly ((55 years) patients with Philadelphia chromosome-positive (Ph+/BCR-ABL+) acute lymphoblastic leukemia (ALL) (CSTI571ADE 10). Ann Hematol 82:716–720

    Article  CAS  PubMed  Google Scholar 

  38. Thomas DA et al (2010) Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 28:3880–3889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zwaan CM et al (2013) Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J Clin Oncol 31:2460–2468

    Article  CAS  PubMed  Google Scholar 

  40. Klinger M et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119:6226–6233

    Article  CAS  PubMed  Google Scholar 

  41. Topp MS et al (2012) Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120:5185–5187

    Article  CAS  PubMed  Google Scholar 

  42. Frankel SR, Baeuerle PA (2013) Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol 17:385–392

    Article  CAS  PubMed  Google Scholar 

  43. Grupp SA (2013) et al Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Herrera L et al (2009) A phase 1 study of Combotox in pediatric patients with refractory B-lineage acute lymphoblastic leukemia. J Pediatr Hematol Oncol 31:936–941

    Article  CAS  PubMed  Google Scholar 

  45. Schindler J et al (2011) A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol 154:471–476

    Article  CAS  PubMed  Google Scholar 

  46. Byrd JC et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Byrd JC et al (2014) Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med (E-pub ahead of print)

  48. Wang ML et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516

    Article  CAS  PubMed  Google Scholar 

  49. Brown JR et al (2014) Idelalisib, an inhibitor of phosphatidylinositol 3 kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 123:3390-7

    Article  CAS  PubMed  Google Scholar 

  50. Flinn IW et al (2014) Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 123:3406-13

    Article  CAS  PubMed  Google Scholar 

  51. Furman RR et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370:997–1007

    Article  CAS  PubMed  Google Scholar 

  52. Kahl BS et al (2014) Results of a phase I study of idelalisib, a PI3Kdelta inhibitor, in patients with relapsed or refractory mantle cell lymphoma (MCL). Blood 123:3398-405

    Article  CAS  PubMed  Google Scholar 

  53. Porter Sharman J (2014) Phase 2 trial of GS-9973, a selective Syk inhibitor, in chronic lymphocytic leukemia (CLL). J Clin Oncol 32 (Suppl), Abstract 7007

  54. Suljagic M et al. (2012) The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Eμ–TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 116:4894–4905

    Article  Google Scholar 

  55. Barrans SL et al (2012) Whole genome expression profiling based on paraffin embedded tissue can be used to classify diffuse large B-cell lymphoma and predict clinical outcome. Br J Haematol 159:441–453

    Article  CAS  PubMed  Google Scholar 

  56. Dunleavy K et al (2009) Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113:6069–6076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Wang M et al (2012) Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol 13:716–723

    Article  PubMed  Google Scholar 

  58. Cheson BD (2010) Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 28:3525–3530

    Article  CAS  PubMed  Google Scholar 

  59. Hillmen P, Robak T, Janssens A et al (2013) Ofatumumab + chlorambucil versus chlorambucil alone in patients with untreated chronic lymphocytic leukemia: results of the phase III study Complement 1 (OMB110911). The ASH 55th Annual Meeting, Dec 7–10, 2013, New Orleans/LA. Abstract 528

  60. Goede V et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110

    Article  CAS  PubMed  Google Scholar 

  61. Morschhauser FA et al (2013) Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 31:2912–2919

    Article  CAS  PubMed  Google Scholar 

  62. Radford J et al (2013) Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). Blood 122:1137–1143

    Article  CAS  PubMed  Google Scholar 

  63. Salles GA et al (2013) Obinutuzumab (GA101) in patients with relapsed/refractory indolent non-Hodgkin lymphoma: results from the phase II GAUGUIN study. J Clin Oncol 31:2920–2926

    Article  CAS  PubMed  Google Scholar 

  64. Deng C, Pan B, O’Connor OA (2013) Brentuximab vedotin. Clin Cancer Res 19:22–27

    Article  CAS  PubMed  Google Scholar 

  65. Pro B et al (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30:2190–2196

    Article  CAS  PubMed  Google Scholar 

  66. Moskowitz AJ (2012) Novel agents in Hodgkin lymphoma. Curr Oncol Rep 14:419–423

    Article  CAS  PubMed  Google Scholar 

  67. Younes A et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30:2183–2189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ito T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  69. Siegel DS et al (2012) A phase 2 study of single-agent carfilzomib (PX-171–003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120:2817–2825

    Article  CAS  PubMed  Google Scholar 

  70. Berenson JR et al (2014) Replacement of bortezomib with carfilzomib for multiple myeloma patients progressing from bortezomib combination therapy. Leukemia (E-pub ahead of print)

  71. Allegra A et al (2014) New orally active proteasome inhibitors in multiple myeloma. Leuk Res 38:1–9

    Article  CAS  PubMed  Google Scholar 

  72. Facon T et al (2013) Continuous lenalidomide and low-dose dexamethasone demonstrates a dignificant PFS and OS advantage in transplant ineligible NDMM patients—the FIRST trial: MM-020/IFM 0701. Blood 122: Abstract 2

    Google Scholar 

  73. Leleu X et al (2013) Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009-02. Blood 121:1968–1975

    Article  CAS  PubMed  Google Scholar 

  74. Richardson PG et al (2013) Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood 121:1961–1967

    Article  CAS  PubMed  Google Scholar 

  75. Richardson PG et al (2014) Panorama 1: a randomized, double-blind, phase 3 study of panobinostat or placebo plus bortezomib and dexamethasone in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol 32 (Suppl), Abstract 8510

  76. Zonder JA et al (2012) A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120:552–559

    Article  CAS  PubMed  Google Scholar 

  77. Lokhorst HM (2014) Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). J Clin Oncol 32 (Suppl), Abstract 8513

  78. Weers M de et al (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186:1840–1848

    Article  PubMed  Google Scholar 

  79. Veer MS van der et al (2011) Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 96:284–290

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. I. Appelmann gibt an, dass kein Interessenkonflikt besteht. T.H. Brümmendorf erhält Forschungsförderung von Novartis sowie Honorare für Beratungs- und Vortragstätigkeit von ARIAD, Bristol-Myers Squibb, Novartis und Pfizer. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.H. Brümmendorf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appelmann, I., Brümmendorf, T. Neue Entwicklungen in der Therapie maligner hämatologischer Erkrankungen. Forum 29, 316–323 (2014). https://doi.org/10.1007/s12312-014-1159-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12312-014-1159-2

Schlüsselwörter

Keywords

Navigation