Skip to main content

Advertisement

Log in

Constrained Spherical Deconvolution Tractography Reveals Cerebello-Mammillary Connections in Humans

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

According to the classical view, the cerebellum has long been confined to motor control physiology; however, it has now become evident that it exerts several non-somatic features other than the coordination of movement and is engaged also in the regulation of cognition and emotion. In a previous diffusion-weighted imaging-constrained spherical deconvolution (CSD) tractography study, we demonstrated the existence of a direct cerebellum-hippocampal pathway, thus reinforcing the hypothesis of the cerebellar role in non-motor domains. However, our understanding of limbic-cerebellar interconnectivity in humans is rather sparse, primarily due to the intrinsic limitation in the acquisition of in vivo tracing. Here, we provided tractographic evidences of connectivity patterns between the cerebellum and mammillary bodies by using whole-brain CSD tractography in 13 healthy subjects. We found both ipsilateral and contralateral connections between the mammillary bodies, cerebellar cortex, and dentate nucleus, in line with previous studies performed in rodents and primates. These pathways could improve our understanding of cerebellar role in several autonomic functions, visuospatial orientation, and memory and may shed new light on neurodegenerative diseases in which clinically relevant impairments in navigational skills or memory may become manifest at early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Article  PubMed  Google Scholar 

  2. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    Article  CAS  PubMed  Google Scholar 

  3. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  CAS  PubMed  Google Scholar 

  4. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    Article  CAS  PubMed  Google Scholar 

  5. Schmahmann JD. Rediscovery of an early concept. Int Rev Neurobiol. 1997;41:3–27.

    Article  CAS  PubMed  Google Scholar 

  6. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  7. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63(11):2132–5.

    Article  PubMed  Google Scholar 

  8. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  9. Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75(2):235–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102(6):363–70.

    Article  CAS  PubMed  Google Scholar 

  11. Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  12. Riva D, Giorgi C. The contribution of the cerebellum to mental and social functions in developmental age. Fiziol Cheloveka. 2000;26(1):27–31.

    CAS  PubMed  Google Scholar 

  13. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  14. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad KO, Ridolfi Lüthy A, Perrig W, Kaufmann F. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(Pt 9):1998–2008.

    Article  PubMed  Google Scholar 

  15. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabbro F, Tavano A, Corti S, Bresolin N, De Fabritiis P, Borgatti R. Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia. 2004;42(4):536–45.

    Article  CAS  PubMed  Google Scholar 

  17. Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5(3):241–9.

    Article  CAS  PubMed  Google Scholar 

  18. Aas JE, Brodal P. Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the cat. J Comp Neurol. 1988;268(3):313–28.

    Article  CAS  PubMed  Google Scholar 

  19. Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol. 1984;229(4):559–75.

    Article  CAS  PubMed  Google Scholar 

  20. Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science. 1984;223(4636):591–3.

    Article  CAS  PubMed  Google Scholar 

  21. Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  22. Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45(2):268–87.

    Article  CAS  PubMed  Google Scholar 

  23. Babb TL, Mitchell Jr AG, Crandall PH. Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Electroencephalogr Clin Neurophysiol. 1974;36(2):141–54.

    Article  CAS  PubMed  Google Scholar 

  24. Moruzzi G. Sham rage and localized autonomic responses elicited by cerebellar stimulation in the acute thalamic cat. Proc XVII Internat Congress Physiol Oxford. 1947;1947:114–5.

    Google Scholar 

  25. Bard P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Phys. 1928;84:490–515.

    Google Scholar 

  26. Snider RS. Recent contribution to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatr. 1950;64:196–219.

    Article  CAS  Google Scholar 

  27. Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22:451–7.

    CAS  PubMed  Google Scholar 

  28. Dietrichs E, Haines DE. Observations on the cerebello-hypothalamic projection, with comments on non-somatic cerebellar circuits. Arch Ital Biol. 1985;123(2):133–9.

    CAS  PubMed  Google Scholar 

  29. Supple Jr WF. Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport. 1993;4(7):979–82.

    Article  PubMed  Google Scholar 

  30. Heath RG. Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.

    Article  CAS  PubMed  Google Scholar 

  31. Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry. 2001;13:247–60.

    Article  Google Scholar 

  32. Berman AJ. Amelioration of aggression: response to selective cerebellar lesions in the rhesus monkey. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology. Vol. 41. San Diego: Academic; 1997. p. 111–9.

    Google Scholar 

  33. Bobée S, Mariette E, Tremblay-Leveau H, Caston J. Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res. 2000;112(1–2):107–17.

    Article  PubMed  Google Scholar 

  34. Zanchetti A, Zoccolini A. Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol. 1954;17(5):475–83.

    CAS  PubMed  Google Scholar 

  35. Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.

    CAS  PubMed  Google Scholar 

  36. Arrigo A, Mormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;42(2):617–25.

    Article  PubMed  Google Scholar 

  40. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118(6):1367–77.

    Article  PubMed  Google Scholar 

  41. Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, et al. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord. 2015;30:342–9.

    Article  PubMed  Google Scholar 

  42. Milardi D, Bramanti P, Milazzo C, Finocchio G, Arrigo A, Santoro G, et al. Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex. 2015;25:406–14.

    Article  PubMed  Google Scholar 

  43. Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016. doi:10.3389/fnana.2016.00029.

    PubMed  PubMed Central  Google Scholar 

  44. Mormina E, Arrigo A, Calamuneri A, Granata F, Quartarone A, Ghilardi MF, et al. Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease. Neuroradiology. 2015;57:327–34.

    Article  PubMed  Google Scholar 

  45. Milardi D, Cacciola A, Cutroneo G, Marino S, Irrera M, Cacciola G, Santoro G, Ciolli P, Anastasi G, Calabrò RS, Quartarone A. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography. Neurosci Lett. 2016;626:68–73.

    Article  CAS  PubMed  Google Scholar 

  46. Embleton KV, Haroon HA, Morris DM, Ralph MA, Parker GJ. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hu Brain Mapp. 2010;31:1570–87.

    Article  Google Scholar 

  47. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42:515–25.

    Article  CAS  PubMed  Google Scholar 

  48. Besson P, Dinkelacker V, Valabregue R, Thivard L, Leclerc X, Baulac M, et al. Structural connectivity differences in left and right temporal lobe epilepsy. NeuroImage. 2014;100:135–44.

    Article  PubMed  Google Scholar 

  49. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35:1459–72.

    Article  PubMed  Google Scholar 

  50. Alexander DC, Barker GJ. Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage. 2005;27:357–67.

    Article  PubMed  Google Scholar 

  51. Descoteaux M, Deriche R, Knösche TR, Anwander A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging. 2009;28:269–86.

    Article  PubMed  Google Scholar 

  52. Tournier JD, Calamante F, Connelly A. Effect of step size on probabilistic streamlines: implications for the interpretation of connectivity analysis. Proc Intl Soc Mag Reson Med. 2011;19:2019.

    Google Scholar 

  53. Pajevic S, Pierpaoli C. Colour schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526–40.

    Article  CAS  PubMed  Google Scholar 

  54. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. NeuroImage. 2013;67:298–312.

    Article  PubMed  Google Scholar 

  55. Behrens TE, Sporns O. Human connectomics. Curr Opin Neurobiol. 2012;22:144–53.

    Article  CAS  PubMed  Google Scholar 

  56. Bijttebier S, Caeyenberghs K, van den Ameele H, Achten E, Rujescu D, Titeca K, van Heeringen C. The vulnerability to suicidal behavior is associated with reduced connectivity strength. Front Hum Neurosci. 2015;9:632.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li C, Huang B, Zhang R, Ma Q, Yang W, Wang L, et al. Impaired topological architecture of brain structural networks in idiopathic Parkinson’s disease: a DTI study. Brain Imaging Behav 2016 [Epub ahead of print].

  58. Cheng H, Wang Y, Sheng J, Kronenberger WG, Mathews VP, Hummer TA, Saykin AJ. Characteristics and variability of structural networks derived from diffusion tensor imaging. Neuroimag. 2012;61:1153–64.

    Article  Google Scholar 

  59. Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for regulating nonsomatic cerebellar activity? Histol Histopathol. 1994;9(3):603–14.

    CAS  PubMed  Google Scholar 

  60. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.

    Article  CAS  PubMed  Google Scholar 

  61. Haines DE, Dietrichs E. Evidence of an x zone in lobule V of the squirrel monkey (Saimiri sciureus) cerebellum: the distribution of corticonuclear fibers. Anat Embryol (Berl). 1991;184(3):255–68.

    Article  CAS  Google Scholar 

  62. Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum and hypothalamus in the tree shrew (Tupaia glis). Brain Res. 1985;328(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  63. Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibres in a prosimian primate (Galago crassicaudatus). Anat Embryol (Berl). 1984;170(3):313–8.

    Article  CAS  Google Scholar 

  64. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299(1):106–22.

    Article  CAS  PubMed  Google Scholar 

  65. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, Aiello I. Pure post-stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25(4):220–4.

    Article  CAS  PubMed  Google Scholar 

  67. Aarsen FK, Van Dongen HR, Paquier PF, Van Mourik M, Catsman-Berrevoets CE. Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology. 2004;62(8):1311–6.

    Article  CAS  PubMed  Google Scholar 

  68. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. George MS, Ketter TA, Post RM. SPECT and PET imaging in mood disorders. J Clin Psychiatry. 1993;54(Suppl):6–13.

    PubMed  Google Scholar 

  70. Paradiso S, Robinson RG, Andreasen NC, Downhill JE, Davidson RJ, Kirchner PT, et al. Emotional activation of limbic circuitry in elderly normal subjects in a PET study. Am J Psychiatry. 1997;154(3):384–9.

    Article  CAS  PubMed  Google Scholar 

  71. Paradiso S, Robinson RG, Boles Ponto LL, Watkins GL, Hichwa RD. Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci. 2003;15(1):35–44.

    Article  PubMed  Google Scholar 

  72. Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT. Differential limbic–cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry. 2000;48(1):30–42.

    Article  CAS  PubMed  Google Scholar 

  73. Habel U, Klein M, Kellermann T, Shah NJ, Schneider F. Same or different? Neural correlates of happy and sad mood in healthy males. NeuroImage. 2005;26(1):206–14.

    Article  PubMed  Google Scholar 

  74. Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, Schruers K. The anatomy of fear learning in the cerebellum: a systematic meta-analysis. Neurosci Biobehav Rev. 2015;59:83–91.

    Article  PubMed  Google Scholar 

  75. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958.

    Google Scholar 

  76. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93–106.

    Article  PubMed  Google Scholar 

  77. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405(6790):1058–62.

    Article  CAS  PubMed  Google Scholar 

  79. Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, Daum I, Timmann D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  81. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ, Friston KJ, Yun LS, Chen K. Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry. 1997;154(7):918–25.

    Article  CAS  PubMed  Google Scholar 

  82. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996;272(5261):545–7.

    Article  CAS  PubMed  Google Scholar 

  83. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.

    Article  CAS  PubMed  Google Scholar 

  84. Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, Fox PT. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci U S A. 2000;97(5):2332–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parsons LM, Egan G, Liotti M, Brannan S, Denton D, Shade R, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci U S A. 2001;98(4):2041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.

    Article  CAS  PubMed  Google Scholar 

  87. Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54(6):1324–31.

    Article  CAS  PubMed  Google Scholar 

  88. Tagaris GA, Richter W, Kim SG, Pellizzer G, Andersen P, Ugurbil K, Georgopoulos AP. Functional magnetic resonance imaging of mental rotation and memory scanning: a multidimensional scaling analysis of brain activation patterns. Brain Res Brain Res Rev. 1998;26(2–3):106–12.

    Article  CAS  PubMed  Google Scholar 

  89. Petrosini L, Leggio MG, Molinari M. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol. 1998;56(2):191–210.

    Article  CAS  PubMed  Google Scholar 

  90. Aguirre GK, Detre JA, Alsop DC, D’Esposito M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996;6(6):823–9.

    Article  CAS  PubMed  Google Scholar 

  91. Katayama K, Takahashi N, Ogawara K, Hattori T. Pure topographical disorientation due to right posterior cingulate lesion. Cortex. 1999;35(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  92. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J. Knowing where and getting there: a human navigation network. Science. 1998;280(5365):921–4.

    Article  CAS  PubMed  Google Scholar 

  93. Rochefort C, Lefort JM, Rondi-Reig L. The cerebellum: a new key structure in the navigation system. Front Neural Circuits. 2013;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vann SD, Nelson AJ. The mammillary bodies and memory: more than a hippocampal relay. Prog Brain Res. 2015;219:163–85.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Davila MD, Shear P, Lane B, Sullivan EV, Pfefferbaum A. Mammillary body and cerebellar shrinkage in chronic alcoholics: an MRI and neuropsychological study. Neuropsychology. 1994;8:433–44.

    Article  Google Scholar 

  96. Harding A, Halliday G, Caine D, Kril J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain. 2000;123(Pt1):141–54.

    Article  PubMed  Google Scholar 

  97. Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, et al. A direct cortico-nigral pathway as revealed by constrained spherical deconvolution tractography in humans. Front Hum Neurosci. 2016;10:374.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chung HW, Chou MC, Chen CY. Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. Am J Neuroradiol. 2011;32:3–13.

    Article  PubMed  Google Scholar 

  99. Mariën P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut BA, et al. Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci. 1996;144(1–2):34–43.

    Article  PubMed  Google Scholar 

  100. Gamper, E Zur Frage der Polioencephalitis der chronischen Alkoholiker. Anatomische Befunde beim chronischem Korsakow und ihre Beziehungen zum klinischen Bild. Deutsche Z. Nervenheilkd; 1928. pp. 122–129.

  101. Parker GD, Marshall D, Rosin PL, Drage N, Richmond S, Jones DK. A pitfall in the reconstruction of fibre ODfs using spherical deconvolution of diffusion MRI data. NeuroImage. 2013;65:433–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Placido Bramanti, Science Manager of I.R.C.C.S. “Centro Neurolesi,” Messina, where the research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cacciola.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciola, A., Milardi, D., Calamuneri, A. et al. Constrained Spherical Deconvolution Tractography Reveals Cerebello-Mammillary Connections in Humans. Cerebellum 16, 483–495 (2017). https://doi.org/10.1007/s12311-016-0830-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0830-9

Keywords

Navigation