Skip to main content
Log in

Gray Matter Atrophy in the Cerebellum—Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This study examined patterns of cerebellar volumetric gray matter (GM) loss across the adult lifespan in a large cross-sectional sample. Four hundred and seventy-nine healthy participants (age range: 7–86 years) were drawn from the Brain Resource International Database who provided T1-weighted MRI scans. The spatially unbiased infratentorial template (SUIT) toolbox in SPM8 was used for normalisation of the cerebellum structures. Global volumetric and voxel-based morphometry analyses were performed to evaluate age-associated trends and gender-specific age-patterns. Global cerebellar GM shows a cross-sectional reduction with advancing age of 2.5 % per decade—approximately half the rate seen in the whole brain. The male cerebellum is larger with a lower percentage of GM, however, after controlling for total brain volume, no gender difference was detected. Analysis of age-related changes in GM volume revealed large bilateral clusters involving the vermis and cerebellar crus where regional loss occurred at nearly twice the average cerebellar rate. No gender-specific patterns were detected. These data confirm that regionally specific GM loss occurs in the cerebellum with age, and form a solid base for further investigation to find functional correlates for this global and focal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grieve SM et al. Regional heterogeneity in limbic maturational changes: evidence from integrating cortical thickness, volumetric and diffusion tensor imaging measures. NeuroImage. 2011;55(3):868–79.

    Article  PubMed  Google Scholar 

  2. Tamnes CK et al. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2010;20(3):534–48.

    Article  PubMed  Google Scholar 

  3. Sowell ER, Thompson PM, Toga AW. Mapping changes in the human cortex throughout the span of life. Neuroscientist. 2004;10(4):372–92.

    Article  PubMed  Google Scholar 

  4. Grieve SM et al. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp. 2005;25(4):391–401.

    Article  PubMed  Google Scholar 

  5. Paul R et al. Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging. 2009;30(3):457–65.

    Article  PubMed  Google Scholar 

  6. O’Hare ED et al. Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport. 2005;16(12):1285–90.

    Article  PubMed  Google Scholar 

  7. Sullivan EV et al. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome: relation to ataxia. Neuropsychology. 2000;14(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  8. Grieve SM et al. Widespread reductions in gray matter volume in depression. NeuroImage Clin. 2013;3:332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Joyal CC et al. MRI volumetry of the vermis and the cerebellar hemispheres in men with schizophrenia. Psychiatry Res. 2004;131(2):115–24.

    Article  PubMed  Google Scholar 

  10. Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160(9):1614–7.

    Article  PubMed  Google Scholar 

  11. Schmitt JE et al. Enlarged cerebellar vermis in Williams syndrome. J Psychiatr Res. 2001;35(4):225–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hagemann G et al. Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol. 2002;249(12):1651–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pinter JD et al. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158(10):1659–65.

    Article  CAS  PubMed  Google Scholar 

  14. Galluzzi S et al. Aging. Neurol Sci. 2008;29(3):296–300.

    Article  PubMed  Google Scholar 

  15. Chung SC et al. Effects of age, gender, and weight on the cerebellar volume of Korean people. Brain Res. 2005;1042(2):233–5.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Ellis, 1920.

  17. Koller WC et al. Cerebellar atrophy demonstrated by computed tomography. Neurology. 1981;31(4):405–12.

    Article  CAS  PubMed  Google Scholar 

  18. Luft AR et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9(7):712–21.

    Article  CAS  PubMed  Google Scholar 

  19. Oguro H et al. Sex differences in morphology of the brain stem and cerebellum with normal ageing. Neuroradiology. 1998;40(12):788–92.

    Article  CAS  PubMed  Google Scholar 

  20. Raz N et al. Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. AJNR Am J Neuroradiol. 1998;19(1):65–71.

    CAS  PubMed  Google Scholar 

  21. Raz N et al. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol. 2001;22(6):1161–7.

    CAS  PubMed  Google Scholar 

  22. Raz N et al. Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up. Neurosci Lett. 2003;349(3):163–6.

    Article  CAS  PubMed  Google Scholar 

  23. Szabo CA et al. MR imaging volumetry of subcortical structures and cerebellar hemispheres in normal persons. AJNR Am J Neuroradiol. 2003;24(4):644–7.

    PubMed  Google Scholar 

  24. Torvik A, Torp S, Lindboe CF. Atrophy of the cerebellar vermis in ageing. A morphometric and histologic study. J Neurol Sci. 1986;76(2-3):283–94.

    Article  CAS  PubMed  Google Scholar 

  25. Xu J et al. Gender effects on age-related changes in brain structure. AJNR Am J Neuroradiol. 2000;21(1):112–8.

    CAS  PubMed  Google Scholar 

  26. Taki Y et al. Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals. PLoS ONE. 2011;6(7):e22734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen BB, Gundersen HJ, Pakkenberg B. Aging of the human cerebellum: a stereological study. J Comp Neurol. 2003;466(3):356–65.

    Article  PubMed  Google Scholar 

  28. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999;7(4):254–66.

    Article  CAS  PubMed  Google Scholar 

  29. Salmond CH et al. Distributional assumptions in voxel-based morphometry. Neuroimage. 2002;17(2):1027–30.

    Article  CAS  PubMed  Google Scholar 

  30. Tisserand DJ et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage. 2002;17(2):657–69.

    Article  PubMed  Google Scholar 

  31. Dimitrova A et al. MRI atlas of the human cerebellar nuclei. NeuroImage. 2002;17(1):240–55.

    Article  CAS  PubMed  Google Scholar 

  32. Dimitrova A et al. Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage. 2006;30(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  33. Magnotta VA et al. Subcortical, cerebellar, and magnetic resonance based consistent brain image registration. Neuroimage. 2003;19(2 Pt 1):233–45.

    Article  PubMed  Google Scholar 

  34. Jernigan TL et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22(4):581–94.

    Article  CAS  PubMed  Google Scholar 

  35. Hickie IB et al. Development of a simple screening tool for common mental disorders in general practice. Med J Aust. 2001;175(Suppl):S10–7.

    PubMed  Google Scholar 

  36. Diedrichsen J et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54(3):1786–94.

    Article  CAS  PubMed  Google Scholar 

  37. Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of single-channel cerebral MR images. Med Imaging IEEE Trans. 1997;16(2):176–86.

    Article  CAS  Google Scholar 

  38. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.

    Article  PubMed  Google Scholar 

  39. Beg MF et al. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis. 2005;61(2):139–57.

    Article  Google Scholar 

  40. Schmahmann JD et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10(3 Pt 1):233–60.

    Article  CAS  PubMed  Google Scholar 

  41. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  42. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.

    Article  CAS  PubMed  Google Scholar 

  43. Ivry R. Cerebellar timing systems. Int Rev Neurobiol. 1997;41:555–73.

    Article  CAS  PubMed  Google Scholar 

  44. Akshoomoff NA, Courchesne E, Townsend J. Attention coordination and anticipatory control. Int Rev Neurobiol. 1997;41:575–98.

    Article  CAS  PubMed  Google Scholar 

  45. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.

    Article  CAS  PubMed  Google Scholar 

  46. Hutchinson S et al. Cerebellar volume of musicians. Cereb Cortex. 2003;13(9):943–9.

    Article  PubMed  Google Scholar 

  47. Lemieux L, Liu RS, Duncan JS. Hippocampal and cerebellar volumetry in serially acquired MRI volume scans. Magn Reson Imaging. 2000;18(8):1027–33.

    Article  CAS  PubMed  Google Scholar 

  48. Nopoulos P et al. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res. 2000;98(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  49. Larsen JO, Skalicky M, Viidik A. Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol. 2000;428(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  50. Torvik A, Torp S, Lindboe CF. Atrophy of the cerebellar vermis in ageing. Journal of the neurological sciences. 1986;76(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  51. Deshmukh AR et al. Quantification of cerebellar structures with MRI. Psychiatry Res Neuroimaging. 1997;75(3):159–71.

    Article  CAS  PubMed  Google Scholar 

  52. Escalona PR et al. In vivo stereological assessment of human cerebellar volume: effects of gender and age. AJNR Am J Neuroradiol. 1991;12(5):927.

    CAS  PubMed  Google Scholar 

  53. Buckner RL et al. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the data and support provided by BRAINnet; www.BRAINnet.net, under the governance of the BRAINnet Foundation. BRAINnet is the scientific network that coordinates access to the Brain Resource International Database for independent scientific purposes. We also thank the individuals who gave their time to participate in the database. The staff at the Department of Radiology, Westmead Hospital, Sydney and at Wakefield Imaging, Adelaide are thanked for their support. We gratefully acknowledge the contribution of Prof Richard Clark for overseeing the data collection at the Adelaide site. MSK is supported by the Australian National Health & Medical Research Council Career Development Fellowship (APP1090148) and Project Grant (APP1008080). SMG acknowledges the support of the Sydney Medical School Foundation and the Parker Hughes Bequest, University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Grieve.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Korgaonkar, M.S. & Grieve, S.M. Gray Matter Atrophy in the Cerebellum—Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age. Cerebellum 16, 388–397 (2017). https://doi.org/10.1007/s12311-016-0813-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0813-x

Keywords

Navigation