Skip to main content
Log in

Cerebellar Changes in Guinea Pig Offspring Following Suppression of Neurosteroid Synthesis During Late Gestation

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Elevated gestational concentrations of allopregnanolone are essential for the development and neuroprotection of the foetal brain. Preterm birth deprives the foetus of these high levels of allopregnanolone, which may contribute to the associated adverse effects on cerebellar development. Preterm birth alters expression of GABAA receptor subunit composition, which may further limit neurosteroid action. The objective of this study was to determine the effects of suppression of allopregnanolone levels on the markers of development and functional outcome. Pregnant guinea pigs were treated with finasteride at a dose (25 mg/kg maternal weight) shown to suppress allopregnanolone between 60 days of gestation until delivery (term ∼71 days). The cerebella from neonates, whose mothers were treated with finasteride or vehicle during pregnancy, were collected at postnatal age 8. Pups that received finasteride displayed significantly greater glial fibrillary acid protein area coverage and reduced GABAA receptor α6-subunit messenger RNA within the cerebellum than pups that were exposed to vehicle. These findings indicate that loss of neurosteroid action on the foetal brain in late gestation produces prolonged astrocyte activation and reductions in GABAA receptor α6-subunit expression. These changes may contribute to the long-term changes in function associated with preterm birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gilbert Evans SE, Ross LE, Sellers EM, Purdy RH, Romach MK. 3α-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol. 2005;21(5):268–79.

    Article  CAS  PubMed  Google Scholar 

  2. Bracamontes J, McCollum M, Esch C, Li P, Ann J, Steinbach JH, et al. Occupation of either site for the neurosteroid allopregnanolone potentiates the opening of the GABAA receptor induced from either transmitter binding Site. Mol Pharmacol. 2011;80(1):79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang JM, Johnston PB, Ball BG, Brinton RD. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci. 2005;25(19):4706–18.

    Article  CAS  PubMed  Google Scholar 

  4. Benarroch EE. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology. 2007;68(8):612–4.

    Article  CAS  PubMed  Google Scholar 

  5. Krieger NR, Scott RG. Nonneuronal localization for steroid converting enzyme: 3α-hydroxysteroid oxidoreductase in olfactory tubercle of rat brain. J Neurochem. 1989;52(6):1866–70.

    Article  CAS  PubMed  Google Scholar 

  6. Melcangi RC, Celotti F, Castano P, Martini L. Differential localization of the 5 alpha-reductase and the 3 alpha-hydroxysteroid dehydrogenase in neuronal and glial cultures. Endocrinology. 1993;132(3):1252–9.

    CAS  PubMed  Google Scholar 

  7. Olsen RW, Sieghart W. International union of pharmacology. LXX. subtypes of γ-aminobutyric acida receptors: classification on the basis of subunit composition, pharmacology, and function. update. Pharmacol Rev. 2008;60(3):243–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci. 2009;29(41):12757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caruncho HJ, Costa E. Double-immunolabelling analysis of GABAA receptor subunits in label-fracture replicas of cultured rat cerebellar granule cells. Receptors Channels. 1994;2(2):143–53.

    CAS  PubMed  Google Scholar 

  10. Shaw JC, Palliser HK, Walker DW, Hirst JJ. Preterm birth affects GABAA receptor subunit mRNA levels during the foetal-to-neonatal transition in guinea pigs. J Dev Orig Health Dis. 2015;6(03):250–60.

    Article  CAS  PubMed  Google Scholar 

  11. Payne HL, Connelly WM, Ives JH, Lehner R, Furtmuller B, Sieghart W, et al. GABAA α6-containing receptors are selectively compromised in cerebellar granule cells of the ataxic mouse. Stargazer J Biol Chem. 2007;282(40):29130–43.

    Article  CAS  PubMed  Google Scholar 

  12. Nitsos I, Rees S. The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs. an immunohistochemical and an ultrastructural study. Int J Dev Neurosci. 1990;8(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  13. Mallard C, Loeliger M, Copolov D, Rees S. Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience. 2000;100(2):327–33.

    Article  CAS  PubMed  Google Scholar 

  14. Sizonenko SV, Borradori-Tolsa C, Vauthay DM, Lodygensky G, Lazeyras F, Huppi PS. Impact of intrauterine growth restriction and glucocorticoids on brain development: Insights using advanced magnetic resonance imaging. Mol Cell Endocrinol. 2006;254-255(0):163–71.

    Article  CAS  PubMed  Google Scholar 

  15. Tolsa CB, Zimine S, Warfield SK, Freschi M, Rossignol AS, Lazeyras F, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res. 2004;56(1):132–8.

    Article  PubMed  Google Scholar 

  16. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci. 2000;97(20):11032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yawno T, Yan EB, Walker DW, Hirst JJ. Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience. 2007;146(4):1726–33.

    Article  CAS  PubMed  Google Scholar 

  18. Yawno T, Hirst JJ, Castillo-Melendez M, Walker DW. Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience. 2009;163(3):838–47.

    Article  CAS  PubMed  Google Scholar 

  19. Kelleher MA, Palliser HK, Walker DW, Hirst JJ. Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on fetal guinea pig brain development. J Endocrinol. 2011;208(3):301–9.

    CAS  PubMed  Google Scholar 

  20. Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatr Clin Neurosci. 2000;12(2):193–8.

    Article  CAS  Google Scholar 

  21. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pae E-K, Chien P, Harper RM. Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett. 2005;375(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  23. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.

    Article  PubMed  Google Scholar 

  24. Van den Hove DLA, Steinbusch HWM, Scheepens A, Van de Berg WDJ, Kooiman LAM, Boosten BJG, et al. Prenatal stress and neonatal rat brain development. Neuroscience. 2006;137(1):145–55.

    Article  PubMed  Google Scholar 

  25. Pascual R, Ebner D, Araneda R, Urqueta MJ, Bustamante C. Maternal stress induces long-lasting Purkinje cell developmental impairments in mouse offspring. Eur J Pediatr. 2010;169(12):1517–22.

    Article  PubMed  Google Scholar 

  26. Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol. 1998;43(2):224–35.

    Article  PubMed  Google Scholar 

  27. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005;115(2):286–94.

    Article  PubMed  Google Scholar 

  28. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MHS, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kelleher MA, Hirst JJ, Palliser HK. Changes in neuroactive steroid concentrations after preterm delivery in the guinea pig. Reprod Sci. 2013;20(11):1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, et al. Astrocytes promote myelination in response to electrical impulses. Neuron. 2006;49(6):823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Djebaili M, Hoffman SW, Stein DG. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience. 2004;123(2):349–59.

    Article  CAS  PubMed  Google Scholar 

  32. Mellon SH, Gong W, Schonemann MD. Endogenous and synthetic neurosteroids in treatment of Niemann–Pick Type C disease. Brain Res Rev. 2008;57(2):410–20.

    Article  CAS  PubMed  Google Scholar 

  33. Griffin LD, Gong W, Verot L, Mellon SH. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med. 2004;10(7):704–11.

    Article  CAS  PubMed  Google Scholar 

  34. Maass F, Petersen J, Hovakimyan M, Schmitt O, Witt M, Hawlitschka A, et al. Reduced cerebellar neurodegeneration after combined therapy with cyclodextrin/allopregnanolone and miglustat in NPC1: a mouse model of Niemann-Pick type C1 disease. J Neurosci Res. 2015;93(3):433–42.

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad I, Lope-Piedrafita S, Bi X, Hicks C, Yao Y, Yu C, et al. Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann-Pick C mice. J Neurosci Res. 2005;82(6):811–21.

    Article  CAS  PubMed  Google Scholar 

  36. Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38(1–2):89–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du C, Khalil MW, Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J Immunol. 2001;167(12):7094–101.

    Article  CAS  PubMed  Google Scholar 

  38. Marin-Husstege M, Muggironi M, Raban D, Skoff RP, Casaccia-Bonnefil P. Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev Neurosci. 2004;26(2–4):245–54.

    CAS  PubMed  Google Scholar 

  39. Eberling P, Koivisto VA. Physiological importance of dehydroepiandrosterone. Lancet. 1994;343(8911):1479–81.

    Article  Google Scholar 

  40. Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonte B, Turecki G, et al. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 2011;36(13):2650–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144(10):4466–77.

    Article  CAS  PubMed  Google Scholar 

  42. Sakamoto H, Ukena K, Tsutsui K. Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci. 2001;21(16):6221–32.

    CAS  PubMed  Google Scholar 

  43. Xilouri M, Papazafiri P. Anti-apoptotic effects of allopregnanolone on P19 neurons. Eur J Neurosci. 2006;23(1):43–54.

    Article  PubMed  Google Scholar 

  44. Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, et al. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci. 1998;95(22):13284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Follesa P, Serra M, Cagetti E, Pisu MG, Porta S, Floris S, et al. Allopregnanolone synthesis in cerebellar granule cells: roles in regulation of GABA(A) receptor expression and function during progesterone treatment and withdrawal. Mol Pharmacol. 2000;57(6):1262–70.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Greer Bennett for her contribution to the animal studies and Britt Saxby for her technical support and conducting the radioimmunoassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela L. Cumberland.

Ethics declarations

Funding

This study was funded by the National Health and Medical Research Council (grant number 10.83208).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the National Health and Scientific Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes and had been approved by the University of Newcastle Animal Care and Ethics Committee. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cumberland, A.L., Palliser, H.K., Walker, D.W. et al. Cerebellar Changes in Guinea Pig Offspring Following Suppression of Neurosteroid Synthesis During Late Gestation. Cerebellum 16, 306–313 (2017). https://doi.org/10.1007/s12311-016-0802-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0802-0

Keywords

Navigation