Skip to main content
Log in

Effects of Leptin Deficiency and Replacement on Cerebellar Response to Food-Related Cues

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Leptin affects eating behavior partly by altering the response of the brain to food-related stimuli. The effects of leptin on brain structure have been observed in the cerebellum, where leptin receptors are most densely expressed, but the function of leptin in the cerebellum remains unclear. We performed a nonrandomized, prospective interventional study of three adults with genetically mediated leptin deficiency. FMRI was recorded three times each year during years 5 and 6 of leptin replacement treatment. Session 1 of each year occurred after 10 months of continuous daily replacement, session 2 after 33–37 days without leptin, and session 3 at 14–23 days after daily replacement was restored. Statistical parametric mapping software (SPM5) was employed to contrast the fMRI blood oxygenation level-dependent response to images of high-calorie foods versus images of brick walls. Covariate analyses quantified the effects of the duration of leptin replacement and concomitant changes in body mass on the cerebral responses. Longer duration of replacement was associated with more activation by food images in a ventral portion of the posterior lobe of the cerebellum, while simultaneous decreases in body mass were associated with decreased activation in a more dorsal portion of the same lobe. These findings indicate that leptin replacement reversibly alters neural function within the posterior cerebellum and modulates plasticity-dependent brain physiology in response to food cues. The results suggest an underexplored role for the posterior cerebellum in the regulation of leptin-mediated processes related to food intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yanovski SZ, Yanovski JA. Obesity prevalence in the United States—up, down, or sideways? N Engl J Med. 2011;364:987–9.

    Article  PubMed  CAS  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.

    Article  PubMed  CAS  Google Scholar 

  3. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–3.

    Article  PubMed  CAS  Google Scholar 

  4. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;84:3686–95.

    Article  PubMed  CAS  Google Scholar 

  5. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A. 2004;101:4531–6.

    Article  PubMed  CAS  Google Scholar 

  6. Matochik JA, London ED, Yildiz BO, Ozata M, Caglayan S, DePaoli AM, et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab. 2005;90:2851–4.

    Article  PubMed  CAS  Google Scholar 

  7. Baicy K, London ED, Monterosso J, Wong ML, Delibasi T, Sharma A, et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A. 2007;104:18276–9.

    Article  PubMed  CAS  Google Scholar 

  8. London ED, Berman SM, Chakrapani S, Delibasi T, Monterosso J, Erol HK et al. Short-term plasticity of gray matter associated with leptin deficiency and replacement. J Clin Endocrinol Metabol. 2011;96(8):E1212–E1220.

    Google Scholar 

  9. Burguera B, Couce ME, Long J, Lamsam J, Laakso K, Jensen MD, et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology. 2000;71:187–95.

    Article  PubMed  CAS  Google Scholar 

  10. Oldreive CE, Harvey J, Doherty GH. Neurotrophic effects of leptin on cerebellar Purkinje but not granule neurons in vitro. Neurosci Lett. 2008;438:17–21.

    Article  PubMed  CAS  Google Scholar 

  11. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  12. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  Google Scholar 

  13. Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, van den Berg WE, Bagozzi RP et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11(1):233–45.

    Article  PubMed  Google Scholar 

  14. Shimizu H, Oh IS, Okada S, Mori M. Leptin resistance and obesity. Endocr J. 2007;54:17–26.

    Article  PubMed  CAS  Google Scholar 

  15. Williamson DA, Ravussin E, Wong ML, Wagner A, Dipaoli A, Caglayan S, et al. Microanalysis of eating behavior of three leptin deficient adults treated with leptin therapy. Appetite. 2005;45:75–80.

    Article  PubMed  CAS  Google Scholar 

  16. Paz-Filho GJ, Andrews D, Esposito K, Erol HK, Delibasi T, Wong ML, et al. Effects of leptin replacement on risk factors for cardiovascular disease in genetically leptin-deficient subjects. Horm Metab Res. 2009;41:164–7.

    Article  PubMed  CAS  Google Scholar 

  17. Paz-Filho G, Delibasi T, Erol HK, Wong ML, Licinio J. Congenital leptin deficiency and thyroid function. Thyroid Res. 2009;2:11.

    Article  PubMed  Google Scholar 

  18. Paz-Filho GJ, Ayala A, Esposito K, Erol HK, Delibasi T, Hurwitz BE, et al. Effects of leptin on lipid metabolism. Horm Metab Res. 2008;40:572–4.

    Article  PubMed  CAS  Google Scholar 

  19. Paz-Filho G, Esposito K, Hurwitz B, Sharma A, Dong C, Andreev V, et al. Changes in insulin sensitivity during leptin replacement therapy in leptin-deficient patients. Am J Physiol Endocrinol Metab. 2008;295:E1401–8.

    Article  PubMed  CAS  Google Scholar 

  20. Licinio J, Milane M, Thakur S, Whelan F, Yildiz BO, Delibasi T, et al. Effects of leptin on intake of specific micro- and macronutrients in a woman with leptin gene deficiency studied off and on leptin at stable body weight. Appetite. 2007;49:594–9.

    Article  PubMed  CAS  Google Scholar 

  21. Galgani JE, Greenway FL, Caglayan S, Wong ML, Licinio J, Ravussin E. Leptin replacement prevents weight loss-induced metabolic adaptation in congenital leptin-deficient patients. J Clin Endocrinol Metab. 2010;95:851–5.

    Article  PubMed  CAS  Google Scholar 

  22. Andreev VP, Paz-Filho G, Wong ML, Licinio J. Deconvolution of insulin secretion, insulin hepatic extraction post-hepatic delivery rates and sensitivity during 24-h standardized meals: time course of glucose homeostasis in leptin replacement treatment. Horm Metab Res. 2009;41:142–51.

    Article  PubMed  CAS  Google Scholar 

  23. Paz-Filho G, Wong ML, Licinio J. Ten years of leptin replacement therapy. Obes Rev. 2011;12(5):e315–23.

    Article  PubMed  CAS  Google Scholar 

  24. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage. 2007;37:410–21.

    Article  PubMed  Google Scholar 

  25. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage. 2003;19:1381–94.

    Article  PubMed  Google Scholar 

  26. Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex. 2005;15:1602–8.

    Article  PubMed  Google Scholar 

  27. Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS, et al. Neural mechanisms underlying food motivation in children and adolescents. NeuroImage. 2005;27:669–76.

    Article  PubMed  Google Scholar 

  28. Cornier MA, Salzberg AK, Endly DC, Bessesen DH, Rojas DC, Tregellas JR. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals. PLoS One. 2009;4:e6310.

    Article  PubMed  Google Scholar 

  29. Schienle A, Schafer A, Hermann A, Vaitl D. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65:654–61.

    Article  PubMed  Google Scholar 

  30. Beaver JD, Lawrence AD, Van DJ, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26:5160–6.

    Article  PubMed  CAS  Google Scholar 

  31. Frank S, Laharnar N, Kullmann S, Veit R, Canova C, Hegner YL, et al. Processing of food pictures: influence of hunger, gender and calorie content. Brain Res. 2010;1350:159–66.

    Article  PubMed  CAS  Google Scholar 

  32. Gizewski ER, Rosenberger C, de Greiff A, Moll A, Senf W, Wanke I, et al. Influence of satiety and subjective valence rating on cerebral activation patterns in response to visual stimulation with high-calorie stimuli among restrictive anorectic and control women. Neuropsychobiology. 2010;62:182–92.

    Article  PubMed  Google Scholar 

  33. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM. Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci. 2001;115:493–500.

    Article  PubMed  CAS  Google Scholar 

  34. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A. 1999;96:4569–74.

    Article  PubMed  CAS  Google Scholar 

  35. Gautier JF, Del PA, Chen K, Salbe AD, Bandy D, Pratley RE, et al. Effect of satiation on brain activity in obese and lean women. ObesRes. 2001;9:676–84.

    CAS  Google Scholar 

  36. Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. NeuroImage. 2006;31:1419–25.

    Article  PubMed  Google Scholar 

  37. Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, et al. Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity (Silver Spring). 2008;16:119–24.

    Article  Google Scholar 

  38. Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ. Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol. 2008;63:652–7.

    Article  PubMed  Google Scholar 

  39. Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31:353–64.

    PubMed  Google Scholar 

  40. Mendoza J, Pevet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci. 2010;30:1894–904.

    Article  PubMed  CAS  Google Scholar 

  41. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118:2583–91.

    PubMed  CAS  Google Scholar 

  42. Savioz A, Charnay Y, Huguenin C, Graviou C, Greggio B, Bouras C. Expression of leptin receptor mRNA (long form splice variant) in the human cerebellum. Neuroreport. 1997;8:3123–6.

    Article  PubMed  CAS  Google Scholar 

  43. Udagawa J, Hashimoto R, Suzuki H, Hatta T, Sotomaru Y, Hioki K, et al. The role of leptin in the development of the cerebral cortex in mouse embryos. Endocrinology. 2006;147:647–58.

    Article  PubMed  CAS  Google Scholar 

  44. O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J. Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol Cell Neurosci. 2007;35:559–72.

    Article  PubMed  Google Scholar 

  45. Moult PR, Harvey J. Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell Adh Migr. 2008;2:269–75.

    Article  PubMed  Google Scholar 

  46. Weng Z, Signore AP, Gao Y, Wang S, Zhang F, Hastings T, et al. Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J Biol Chem. 2007;282:34479–91.

    Article  PubMed  CAS  Google Scholar 

  47. Lu J, Park CS, Lee SK, Shin DW, Kang JH. Leptin inhibits 1-methyl-4-phenylpyridinium-induced cell death in SH-SY5Y cells. Neurosci Lett. 2006;407:240–3.

    Article  PubMed  CAS  Google Scholar 

  48. Rouet-Benzineb P, Aparicio T, Guilmeau S, Pouzet C, Descatoire V, Buyse M, et al. Leptin counteracts sodium butyrate-induced apoptosis in human colon cancer HT-29 cells via NF-kappaB signaling. J Biol Chem. 2004;279:16495–502.

    Article  PubMed  CAS  Google Scholar 

  49. Garza JC, Guo M, Zhang W, Lu XY. Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem. 2008;283:18238–47.

    Article  PubMed  CAS  Google Scholar 

  50. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    Article  PubMed  CAS  Google Scholar 

  51. Valerio A, Ghisi V, Dossena M, Tonello C, Giordano A, Frontini A, et al. Leptin increases axonal growth cone size in developing mouse cortical neurons by convergent signals inactivating glycogen synthase kinase-3beta. J Biol Chem. 2006;281:12950–8.

    Article  PubMed  CAS  Google Scholar 

  52. Guo Z, Jiang H, Xu X, Duan W, Mattson MP. Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem. 2008;283:1754–63.

    Article  PubMed  CAS  Google Scholar 

  53. Irving AJ, Wallace L, Durakoglugil D, Harvey J. Leptin enhances NR2B-mediated N-methyl-d-aspartate responses via a mitogen-activated protein kinase-dependent process in cerebellar granule cells. Neuroscience. 2006;138:1137–48.

    Article  PubMed  CAS  Google Scholar 

  54. Burgos-Ramos E, Chowen JA, Argente J, Barrios V. Regional and temporal differences in leptin signaling in rat brain. Gen Comp Endocrinol. 2010;167:143–52.

    Article  PubMed  CAS  Google Scholar 

  55. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145:4880–9.

    Article  PubMed  Google Scholar 

  56. Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S, et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. NeuroImage. 2007;34:137–43.

    Article  PubMed  Google Scholar 

  57. Oakes TR, Fox AS, Johnstone T, Chung MK, Kalin N, Davidson RJ. Integrating VBM into the general linear model with voxelwise anatomical covariates. NeuroImage. 2007;34:500–8.

    Article  PubMed  Google Scholar 

  58. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–2.

    Article  PubMed  CAS  Google Scholar 

  59. Kwok V, Niu Z, Kay P, Zhou K, Mo L, Jin Z et al. Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proc Natl Acad Sci U S A. 2011;108(16):6686–8.

    Article  PubMed  CAS  Google Scholar 

  60. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans A. MRI atlas of the human cerebellum. San Diego: Academic; 2000.

    Google Scholar 

Download references

Acknowledgments

During the course of this study Amgen, Inc. graciously provided leptin. Amylin, Inc. now provides leptin to these patients. Neither Amgen, Inc. nor Amylin, Inc. contributed to the design, analysis, or writing of this study. This study was supported in part by NIH grants K24RR016996, R01DK058851, and U01GM061394 (JL); K24RR017365 and R01DK063240 (M-LW); T32 DA024635 (EDL); and the UCLA GCRC (NIH grant M01RR00865 to G.S. Levy). GPF, M-LW and JL were supported by The Australian National University institutional funds. EDL was supported by endowments from the Thomas P. Pike and Katherine K. Chair in Addiction Studies and the Marjorie M. Greene Family Trust.

Conflict of Interest

The authors do not declare any potential conflicts of interest in this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edythe D. London.

Additional information

Julio Licinio and Edythe D. London contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, S.M., Paz-Filho, G., Wong, ML. et al. Effects of Leptin Deficiency and Replacement on Cerebellar Response to Food-Related Cues. Cerebellum 12, 59–67 (2013). https://doi.org/10.1007/s12311-012-0360-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0360-z

Keywords

Navigation