Skip to main content
Log in

Stromal Expression of Fibroblast Activation Protein Alpha (FAP) Predicts Platinum Resistance and Shorter Recurrence in patients with Epithelial Ovarian Cancer

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The microenvironment plays an important role in tumorigenesis. Fibroblast activation protein alpha (FAP) is overexpressed by fibroblasts present in the microenvironment of many tumors. High FAP expression is a negative prognostic factor in several malignancies, but this has not been investigated in epithelial ovarian cancer (EOC). The aim of this study is to define the value of FAP in EOC. Immunohistochemical staining using an anti-FAP antibody was performed on 338 EOC tissues. mRNA levels in cancer cell lines and FAP silencing using siRNA was also done. FAP immunoexpression by tumor stroma was a significant predictive factor for platinum resistance (p = 0.0154). In survival analysis of days to recurrence, FAP stoma+ was associated with shorter recurrence than those with FAP stroma (p = 0.0247). In 21.8 % of tumors, FAP protein was expressed by the tumor epithelium, and FAP mRNA was more highly expressed in tumors (n = 489) than in normal tissues (n = 8) (p = 3.88 × 10−4). In vitro, addition of FAP to EOC cells induced a 10–12 % increase in cell viability both in the presence and absence of cisplatin. Conversely, siRNA silencing of FAP resulted in ~10 % reduction in EOC cell proliferation. We have shown that FAP expression in EOC is associated with poorer clinical outcomes. FAP may have novel cell-autonomous effects suggesting that targeting FAP could have pleiotropic anti-tumor effects, and anti-FAP therapy could be a highly effective novel treatment for EOC, especially in cisplatinum-resistant cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  2. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Servais C, Erez N (2013) From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. Pathology 229:198–207

    CAS  Google Scholar 

  4. Otsman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  Google Scholar 

  5. Xing F, Saidou J, Watabe K (2011) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179

    Article  Google Scholar 

  6. Anderberg C, Pietras K (2009) On the origin of cancer-associated fibroblasts. Cell Cycle 8:1561–1465

    Article  Google Scholar 

  7. Scanlan MJ, Raj BK, Calvo B et al (1994) Molecular cloning of fibroblast activation protein α, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A 91:5657–5661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Polgar L (2002) The prolyl oligopepetidase family. Cell Mol Life Sci 59:349–362

    Article  CAS  PubMed  Google Scholar 

  9. Bae S, Park CW, Son HK et al (2008) Fibroblast activation protein alpha identifies mesnechymal stromal cells from human bone marrow. Br J Haematol 142:827–830

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SJ, Alpaugh K, Palazzo I et al (2008) Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37:154–158

    Article  CAS  PubMed  Google Scholar 

  11. Shi M, Yu DH, Chen Y et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gasterol 18:840–846

    Article  CAS  Google Scholar 

  12. Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13:1736–1741

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Tang H, Cai J et al (2011) Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett 303:47–55

    Article  CAS  PubMed  Google Scholar 

  14. Kelly T, Huang Y, Simms AE, Masur A (2013) Fibroblast activation protein-α: a key modulator of the microenvironment in multiple pathologies. Int Rev Cell Mol PathoL 297:83–116

    Google Scholar 

  15. O’Brien P, O’Connor BF (2008) Seprase: an overview of an important matrix serine protease. Biochem Biophys Acta 1784:1130–1145

    PubMed  Google Scholar 

  16. Lai D, Wang F (2012) Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol 41:541–50

    CAS  PubMed  Google Scholar 

  17. Yang W, Han W, Ye S et al (2013) Fibroblast activation protein-α promotes ovarian cancer cell proliferation and invasion via extracellular and intracellular signaling mechanisms. Exp Mol Pathol 95:105–110

    Article  CAS  PubMed  Google Scholar 

  18. Spaeth EL, Dembinski JL, Sasser AK et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4:e4992

    Article  PubMed Central  PubMed  Google Scholar 

  19. Monsky WL, Lin CY, Aoyama A et al (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54:5702–5710

    CAS  PubMed  Google Scholar 

  20. The National Cancer Institute’s Surveillance, Epidemiology and End Results Program. The Center for Disease Control and Prevention’s National Program of Cancer Registries 2012. SEER.cancer.gov

  21. du Bois A, Quinn M, Thigpen T et al (2005) 2004 consensus statements on the management of ovarian cancer: final document of the 3rd International gynecologic Cancer Intergroup Ovarian Cancer Consensus Conference. Ann Oncol 16(Suppl 8):viii7–viii12

    PubMed  Google Scholar 

  22. Ali AY, Farrand L, Kim JY et al (2012) Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum. Ann N Y Acad Sci 1271:58–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shimizu Y, Kamoi S, Amada S, Hasumi K, Akiyama F, Silverberg SG (1998) Toward the development of a universal grading system for ovarian epithelial carcinoma. I. Prognostic significance of histopathologic features–problems involved in the architectural grading system. Gynecol Oncol 70:2–12

    Article  CAS  PubMed  Google Scholar 

  24. Mhawech-Fauceglia P, Fischer G, Alvarez V Jr, Ahmed A, Herrmann FR (2007) Predicting outcome in minimally invasive (T1A and T1B) urothelial bladder carcinoma using a panel of biomarkers; a high throughput tissue microarray analysis. BJU Int 100:1182–7

    PubMed  Google Scholar 

  25. Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Porc Natl Acad Sci USA 87:7235–7239

    Article  CAS  Google Scholar 

  26. Batistatou A, Televantou D, Bobos M et al (2013) Evaluation of current prognostic and predictive markers in breast cancer: a validation study of tissue microarrays. Anticancer Res 33:2139–45

    CAS  PubMed  Google Scholar 

  27. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401

    Article  PubMed  Google Scholar 

  28. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:11

    Article  Google Scholar 

  29. Karst AM, Levanon K, Drapkin R (2011) Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 108:7547–7552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Perets R, Wyant GA, Muto KW (2013) Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in brca;tp53;pten models. Cancer Cell 24:751–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lee JM, Mhawech-Fauceglia P, Lee N et al (2013) A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 93:528–542

    Article  PubMed  Google Scholar 

  32. Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101:830–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mori Y, Kono K, Matsumoto Y et al (2004) The expression of a type II transmembrane serine protease (Seprase) in human gastric carcinoma. Oncology 67:411–419

    Article  CAS  PubMed  Google Scholar 

  34. Kelly T, Kechelava S, Rozypai TL, West KW, Korourian S (1998) Seprase, a membrane-bound protease is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod Pathol 11:855–863

    CAS  PubMed  Google Scholar 

  35. Iwasa S, Okada K, Chen WT et al (2005) Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colon cancer. Cancer Lett 227:229–236

    Article  PubMed  Google Scholar 

  36. Lawrenson K, Benjamin E, Turmaine M, Jacobs I, Gayther A, Dafou D (2009) In vitro three-dimensional modelling of human ovarian surface epithelial cells. Cell Prolif 42:385–93

    Article  CAS  PubMed  Google Scholar 

  37. Lawrenson K, Grun B, Benjamin E, Jacobs IJ, Dafou D, Gayther SA (2010) Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia 12:317–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ariga N, Sato E, Ohuchi N, Nagura H, Ohtani H (2001) Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer 95:67–72

    Article  CAS  PubMed  Google Scholar 

  39. Mueller MM, Fusenig NE (2004) Friends or foes-bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  40. Straussman R, Morikawa T, Shee K et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR (2012) Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 104:1320–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Brennen WN, Isaacs JT, Denmeade SR (2012) Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther 11:257–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. Plos One 4(11):e7965

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulette Mhawech-Fauceglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhawech-Fauceglia, P., Yan, L., Sharifian, M. et al. Stromal Expression of Fibroblast Activation Protein Alpha (FAP) Predicts Platinum Resistance and Shorter Recurrence in patients with Epithelial Ovarian Cancer. Cancer Microenvironment 8, 23–31 (2015). https://doi.org/10.1007/s12307-014-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-014-0153-7

Keywords

Navigation