Skip to main content
Log in

Vision without Frames: A Semiotic Paradigm of Event Based Computer Vision

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Conventional imagers and almost all vision processes use and rely on theories that are based on the principle of static image-frames. A frame is a 2D matrix that represents the spatial locations of intensities of a scene projected on the imager. The notion of a frame itself is so embedded in machine vision, that it is usually taken for granted that this is how biological systems store light information. This paper presents a biosinpired event-based image formation principle, which output data rely on an asynchronous acquisition process. The generated information is stored in temporal volumes, which size and information depend only on the dynamic content of observed scenes. Practical analysis of such information will shows that the processing of visual information can only be based on a semiotic process. The paper also provides a general definition of the notion of visual features as the interpretation of signs according to different possible readings of the codified visual signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ashby, W. R. (1956) Introduction to cybernetics. Methuen, London, UK.

  • Barbosa, S. M., Fernandes, M. J., & Silva, M. E. (2005) Multivariate autoregressive models for geophysical fields: Application to sea level from Topex/Poseidon satellite altimetry, circuits, and systems (ICECS2004), Tel Aviv, Israel, Dec. 2004 (Vol. 7, 07264, pp. 211–214). Geophysical Research Abstracts.

  • Barron, J., Fleet, D., & Beauchemin, S. (1994) Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77.

    Article  Google Scholar 

  • Benosman, R., & Kang, S. B. (2002) Panoramic vision: Sensors theory and applications. Springer Verlag, NY: Monographs in Computer Science, ISBN 0-387-95111-3.

  • Capurro, C., Panerai, C., & Sandini, G. (1996) Vergence and tracking fusing log-polar images. In Proc. International Conference on Pattern Recognition.

  • Crossley, S., Thacker, N. A., & Seed, N. L. (1998) Benchmarking of bootstrap temporal stereo using statistical and physical scene modelling. In British Machine Vision Conference, pp. 346–355, 1998.

  • Dawkins, R. (1996) Climbing mount improbable. New York: Norton.

    Google Scholar 

  • Delbruck, T., & Lichtsteiner, P. (2007) Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In Proc. IEEE ISCAS 2007 (pp. 845–849). New Orleans, LA.

  • Faugeras, O. (1993) Three-dimensional computer vision. MIT Press ISBN-10: 0-262-06158-9.

  • Fried, S. I., Hsueh, H. A., & Werblin, F. S. (2006) A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. Journal of Neurophysiology, 95(2), 970–978

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro, H. (2006) Scientific issues concerning androids. International Journal of Robotics Research, 26(1), 105–117.

    Google Scholar 

  • Land, M. F., & Fernald, R. D. (1992) The evolution of eyes. Annual Review of Neuroscience, 15, 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Lichtsteiner, P., Delbruck, T., & Kramer, J. (2004) Improved ON/OFF temporally differentiating address-event imager. In Proc. 11th IEEE Int. Conf. Electronics, Circuits, and Systems (ICECS2004) (pp. 211–214). TelAviv, Israel.

  • Lichtsteiner, P., Posch, C., & Delbruck, T. (2008) A 128*128 120 dB 15s latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2), 566–576.

    Article  Google Scholar 

  • Lowe, D. (2004) Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110.

    Article  Google Scholar 

  • Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman.

    Google Scholar 

  • McCarthy, S. T, & Owen, W. G. (1996) Preferential representation of natural scenes in the salamander retina. Investigative Ophthalmology Vision Science, 37, S674.

    Google Scholar 

  • Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982) Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London, B, 216, 427–459.

    Article  CAS  Google Scholar 

  • Tsin, Y., Ramesh, V., & Kanade, T. (2001) Statistical calibration of CCD imaging process. In Proc. International Conference on Computer Vision (Vol. 1, pp. 480–487).

  • Wiener, N. (1948) Cybernetics or control and communication in the animal and the machine, Hermann cie editeurs, Paris, The Technology Press, Cambridge, Mass. New York: John Wiley & Sons Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryad Benosman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benosman, R. Vision without Frames: A Semiotic Paradigm of Event Based Computer Vision. Biosemiotics 3, 1–16 (2010). https://doi.org/10.1007/s12304-009-9071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-009-9071-3

Keywords

Navigation