Skip to main content
Log in

Age, geochemistry and Sr-Nd-Pb isotopic compositions of alkali volcanic rocks from Mt. Melbourne and the western Ross Sea, Antarctica

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

New K/Ar ages and geochemical and isotope data (Sr, Nd, Pb) of submarine samples from the Terror Rift Region and subaerial lavas from Mt. Melbourne Volcanic Field (MMVF) in the western Ross Sea, Antarctica, are presented. The MMVF samples are classified into Groups A and B based on their temporal and spatial distribution. All samples are alkaline, ranging from basanite to trachybasalt, and exhibit the Ocean Island Basalt (OIB)-like patterns of trace element distribution, with a prominent depletion in K and Pb. New K/Ar ages and geochemical data of the studied samples show no correlations between age and their compositions and suggest that they represent products of three different magmatic episodes. The Terror Rift submarine lavas (0.46–0.57 Ma) display a distinct trend, with more primitive geochemical characteristics (higher MgO (7.2–9.8 wt%) and CaO (9.9–11.9 wt%) and stronger HIMU signature (higher 206Pb/204Pb and 143Nd/144Nd ratios, and less radiogenic 87Sr/86Sr) than those of MMVF basalts. Results from a rare earth element (REE) model suggest that the Terror Rift submarine lavas are derived from small degrees (1–2%) of partial melting of an amphibole-bearing garnet peridotite mantle source. Despite the distinctly different ages and locations of the MMVF Group A (0.16–0.33 Ma) and B (1.25–1.34 Ma) basalts, they show similar geochemical and isotopic features, indicating the sharing of common mantle sources and magma processes during magma generation. Incompatible trace element ratios (e.g., Ba/Nb = 6.4–13.2, La/YbN = 14.4–23.2, Dy/Yb = 2.2–3.0) and isotopic compositions of the MMVF Group A and B volcanics suggest derivation from higher degrees (2–5%) of partial melting of an amphibole bearing garnet peridotite source and strong influence of an EMI-type mantle source. The stronger HIMU signature of the Terror Rift submarine lavas appears to be related to smaller degrees of partial melting, suggesting predominant contribution of the HIMU component to the less partially melted rocks from the Cenozoic NVL magmatism. In contrast, the higher degree of MMVF A and B magmas can be explained by greater interaction with heterogeneous lithospheric mantle, resulting in a diluted HIMU signature compared with that of the Terror Rift submarine lavas. We assume that HIMU- and EMI-type mantle components incorporated in the Cenozoic NVL magmas originated from sub-continental lithospheric mantle metasomatized by plume or subduction-related fluids prior to the breakup of Gondwanaland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000, Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67–95.

    Article  Google Scholar 

  • Aldanmaz, E., Köprübasi, N., Gürer, Ö.F., Kaymakçi, N., and Gourgaud, A., 2006, Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86, 50–76.

    Article  Google Scholar 

  • Armienti, P. and Baroni, C., 1999, Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology, 27, 617–620.

    Article  Google Scholar 

  • Armienti, P. and Perinelli, C., 2010, Cenozoic thermal evolution of lithospheric mantle in northern Victoria Land (Antarctica): Evidences from mantle xenoliths. Tectonophysics, 486, 28–35.

    Article  Google Scholar 

  • Becker, H., 1996, Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from lower Austria. Journal of Petrology, 37, 785–810.

    Article  Google Scholar 

  • Behrendt, J.C., 1999, Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations: A review. Global and Planetary Change, 23, 25–44.

    Article  Google Scholar 

  • Behrendt, J.C., LeMasurier, W.E., Cooper, A.K., Tessensohn, F., Tréhu, A., and Damaske, D., 1991, Geophysical studies of the West Antarctic Rift System. Tectonics, 10, 1257–1273.

    Article  Google Scholar 

  • Chand, S., Radhakrishna, M., and Subrahmanyam, C., 2001, India- East Antarctica conjugate margins: Rift-shear tectonic setting inferred from gravity and bathymetry data. Earth and Planetary Science Letters, 185, 225–236.

    Article  Google Scholar 

  • Chazot, G., Menzies, M.A., and Harte, B., 1996, Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochimica et Cosmochimica Acta, 60, 423–437.

    Article  Google Scholar 

  • Choo, M.K., Lee, M.J., Lee, J.I., Kim, K.H., and Parl, K.-H., 2012, Geochemistry and Sr-Nd-Pb isotopic constraints on the petrogenesis of Cenozoic lavas from the Pali Aike and Morro Chico area (52°S), southern Patagonia, South America. Island Arc, 21, 327–350.

    Article  Google Scholar 

  • Class, C. and Goldstein, S.L., 1997, Plume–lithosphere interactions in the ocean basins; constraints from the source mineralogy. Earth and Planetary Science Letters, 150, 245–260.

    Article  Google Scholar 

  • Coltorti, M., Beccaluva, L., Bonadiman, C., Faccini, B., Ntaflos, T., and Siena, F., 2004, Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75, 115–139.

    Article  Google Scholar 

  • Cook, C., Briggs, R.M., Smith, I.E.M., and Maas, R., 2005, Petrology and geochemistry of intraplate basalts in the south Auckland volcanic field, New Zealand: evidence for two coeval magma suites from distinct sources. Journal of Petrology, 46, 473–503.

    Article  Google Scholar 

  • Cooper, A.F., Adam, L.J., Coulter, R.F., Eby, G.N., and McIntosh, W.C., 2007, Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica. Journal of Volcanology and Geothermal Research, 165, 189–216.

    Article  Google Scholar 

  • DePaolo, D.J. and Daley, E.E., 2000, Neodymium isotopes in basalts of the southwest Basin and Range and lithospheric thinning during continental extension. Chemical Geology, 169, 157–185.

    Article  Google Scholar 

  • Elikins-Tanton, L.T., 2007, Continental magmatism, volatile recycling, and heterogeneous mantle caused by lithospheric gravitational instabilities. Journal of Geophysical Research, 112, B03405. doi: 10.1029/2005JB004072

    Google Scholar 

  • Finn, C.A., Dietmar Müller, R., and Panter, K.S., 2005, A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific province without rift or plume origin. Geochemistry, Geophysics, Geosystems, 6, Q02005. doi:10.1029/2004GC000723

    Article  Google Scholar 

  • Fitzgerald, P.G. and Stump, E., 1997, Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: New constraints from apatite fission track thermochronology in the Scott Glacier region. Journal of Geophysical Research, 102, 7747–7765.

    Article  Google Scholar 

  • Foley, S., 1991, High-pressure stability of the fluor- and hydroxyend- members of paragasite and K-richterite. Geochimica et Cosmochimica Acta, 55, 2689–2694.

    Article  Google Scholar 

  • Furman, T. and Graham, D., 1999, Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 48, 237–262.

    Article  Google Scholar 

  • Gallagher, K. and Hawkesworth, C., 1992, Dehydration melting and the generation of Continental Flood Basalts. Nature, 358, 57–59

    Article  Google Scholar 

  • Hart, S.R., Blusztajn, J., and Craddok, C., 1995, Cenozoic volcanism in Antarctica: Jones Mountains and Peter I Island. Geochimica et Cosmochimica Acta, 59, 3379–3388.

    Article  Google Scholar 

  • Hart, S.R., Blusztajn, J., Le Masurier, W.E., and Rex, D.C., 1997, Hobbs Coast Cenozoic volcanism: implications for the West Antarctic rift system. Chemical Geology, 139, 223–248.

    Article  Google Scholar 

  • Hawkesworth, C.J. and Gallagher, K., 1993, Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism. Terra Nova, 5, 552–559

    Article  Google Scholar 

  • Hoernle, K., White, J.D.L., van den Bogaard, P., Hauff, F., Coombs, D.S., Werner, R., Timm, C., Garbe-Schonberg, D., Reay, A., and Cooper, A.F., 2006, Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth and Planetary Science Letters, 248, 335–352.

    Article  Google Scholar 

  • Hofmann, A.W., Jochum, K.P., Seufert, M., and White, W.M., 1986, Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 79, 33–45.

    Article  Google Scholar 

  • Hole, M.J. and LeMasurier, W.E., 1994, Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica. Contribution to Mineralogy and Petrology, 117, 187–202.

    Article  Google Scholar 

  • Ishizuka, O., Taylor, R.N., Milton, J.A., and Nesbitt, R.W., 2003, Fluid–mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth and Planetary Science Letters, 211, 221–236.

    Article  Google Scholar 

  • Johnson, J.S., Gibson, S.A., Thompson, R.N., and Nowell, G.M., 2005, Volcanism in the Vitim Volcanic Field, Siberia: geochemical evidence for a mantle plume beneath the Baikal Rift Zone. Journal of Petrology, 46, 1309–1344.

    Article  Google Scholar 

  • Kyle, P.R., 1990, McMurdo Volcanic Group, Western Ross Embayment. In: LeMasurier, W.E. and Thomson, J.W. (eds.), Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic Research Series, 48, AGU, Washington, D.C. p. 19–25.

    Google Scholar 

  • Kyle, P.R. and Muncy, H.L., 1989, Geology and geochronology of McMurdo volcanic group rock in the vicinity of Lake Morning, McMurdo Sound, Antarctica. Antarctic Science, 1, 345–350.

    Article  Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the Total Alkali-Silica diagram. Journal of Petrology, 27, 745–750.

    Article  Google Scholar 

  • LeMasurier, W.E. and Landis, C.A., 1996, Mantle-plume activity recorded by low relief erosion surfaces in West Antarctica and New Zealand. Geological Society of American Bulletin, 108, 1450–1466.

    Article  Google Scholar 

  • Lee, M.J., Lee, J.I., Kwon, S.-T., Choo, M.K., Jeong, K.-S., Cho, J.-H., and Kim, S.-R., 2011, Sr-Nd-Pb isotopic compositions of submarine alkali basalts recovered from the South Korea Plateau, East Sea. Geosciences Journal, 15, 149–160.

    Article  Google Scholar 

  • Ma, G.-S.-K., Malpas, J., Xenophontos, C., Suzuki, K., and Lo, C.-H., 2011, Early Cretaceous volcanism of the Coastal Ranges, NW Syria: Magma genesis and regional dynamics. Lithos, 126, 290–306.

    Article  Google Scholar 

  • Martin, A.P., Cooper, A.F., and Price, R.C., 2013, Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources. Geochimica et Cosmochimica Acta, 122, 127–152.

    Article  Google Scholar 

  • McCoy-West, A.J., Baker, J.A., Faure, K., and Wysoczanski, R., 2010, Petrogenesis and origins of Mid-Cretaceous continental intraplate volcanism in Marlborough, New Zealand: implications for the long-lived HIMU magmatic mega-province of the SW Pacific. Journal of Petrology, 51, 2003–2045.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.S., 1995, The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • McKenzie, D. and O’Nions, R.K., 1991, Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32, 1021–1091.

    Article  Google Scholar 

  • McKenzie, D. and Bickle, M.J., 1988, The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.

    Article  Google Scholar 

  • Melchiorre, M., Coltorti, M., Bonadiman, C. Faccini, B., O’Reilly, S.Y., and Pearson, N.J., 2011, The role of eclogite in the rift-related metasomatism and Cenozoic magmatism of Northern Victoria Land, Antarctica. Lithos, 124, 319–330.

    Article  Google Scholar 

  • Müller, P., Schmidt-Thom, M., Kreuzer, H., Tessensohn, F., and Vetter, U., 1991, Cenozoic peralkaline magmatism at the western margin of the Ross Sea, Antarctica. Memorie Società Geologica Italiana, 46, 315–336.

    Google Scholar 

  • Nagao, K., Nishido H., Itaya, T., and Ogata, K., 1984, An age Determination by K-Ar Method. The Bulletin of the Hiruzen Research Institute, 9, 19–38.

    Google Scholar 

  • Nagao, K., Ogata, A., Miura, Y.N., and Yamaguchi, K., 1996, Ar isotope analysis for K-mass spectrometers I: Isotope dilution method. Journal of Mass Spectrometry Society of Japan, 44, 36–61.

    Article  Google Scholar 

  • Nardini, I., Armienti, P., Rocchi, S., Dallai, L., and Harrison, D., 2009, Sr-Nd-Pb-He-O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic Rift. Journal of Petrology, 50, 1359–1375.

    Article  Google Scholar 

  • Orihashi, Y., Naranjo, J.A., Motoki, A., Sumino, H., Hirata, D., Anma, R., and Nagao, K., 2004, Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K-Ar ages. Revista Geolgica de Chile, 31, 207–224.

    Google Scholar 

  • Panter, K.S., Hart, S.R., Kyle, P.R., Blusztanjn, J., and Wilch, T.I., 2000, Geochemistry of Late Cenozoic basalts from the Crary Mountains: Characterization of mantle sources in Marie Byrd Land, Antarctica. Chemical Geology, 165, 215–241.

    Article  Google Scholar 

  • Panter, K.S., Blusztajn, J., Hart, S.R., Kyle, P.R., Esser, R., and McIntash, W.C., 2006, The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and Subantarctic islands. Journal of Petrology, 47, 1673–1704.

    Article  Google Scholar 

  • Perinelli, C., Armienti, P., and Dallai, L., 2006, Geochemical and Oisotope constraints on the evolution of lithospheric mantle in the Ross Sea rift area (Antarctica). Contributions to Mineralogy and Petrology, 151, 245–266.

    Article  Google Scholar 

  • Perinelli, C., Armienti, P., and Dallai, L., 2011, Thermal evolution of the lithosphere in a rift environment as inferred from the geochemistry of mantle cumulates, Northern Victoria Land, Antarctica. Journal of Petrology, 52, 665–690.

    Article  Google Scholar 

  • Rocchi, S., Armienti, P., D’ Orazio, M., Tonarini, S., Wijbrans, J.R., and Di Vincenzo, G., 2002, Cenozoic magmatism in the western Ross Embayment: Role of mantle plume versus plate dynamics in the development of the West Antarctic Rift System. Journal of Geophysical Research, 107, ECV 5-1–ECV 5–22. doi:10.1029/2001JB000515

    Article  Google Scholar 

  • Rocchi, S., Storti, F., Di Vincenzo, G., and Rossetti, F., 2003, Intraplate strike-slip tectonics as an alternative to mantle plume activity for the Cenozoic rift magmatism in the Ross Sea region, Antarctica. In: Storti, F., Holdsworth, R.E., and Salvini, F. (eds.), Intraplate Strike-Slip Deformation Belts. Geological Society Special publication, 210, London, p. 145–158.

    Article  Google Scholar 

  • Rocchi, S., Armienti, P., and Di Vincenzo, G., 2005, No plume, no rift magmatism in the West Antarctic Rift. In: Foulger, G.R., Natland, J.H., Presnall, D.C., and Anderson, D.L. (eds.), Plates, Plumes, and Paradigms. Geological Society of America Special Papers, 388, p. 435–447

    Article  Google Scholar 

  • Rocholl, A., Stein, M., Molzahan, M., Hart, S.R., and Wörner, G., 1995, Geochemical evolution of rift magmas by progressive tapping of stratified mantle source beneath the Ross Sea rift, Northern Victoria Land, Antarctica. Earth and Planetary Science Letters, 131, 207–224.

    Article  Google Scholar 

  • Ryan, J.G. and Kyle, P.R., 2004, Lithium abundance and lithium isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chemical Geology, 212, 125–142.

    Article  Google Scholar 

  • Salvini, F., Brancolini, G., Busetti, M., Storti, F., Mazzarini, F., and Coren, F., 1997, Cenozoic geodynamics of the Ross Sea Region, Antarctica: Crustal extension, intraplate strike-slip faulting and tectonic inheritance. Journal of Geophysical Research, 102, 24669–24696.

    Article  Google Scholar 

  • Schott, B. and Schmeling, H., 1998, Delamination and detachment of a lithospheric root. Tectonophysics, 296, 225–247.

    Article  Google Scholar 

  • Schott, B., Yuen, D.A., and Schmeling, H., 2000, The significance of shear heating in continental delamination. Physics of the Earth Planetary Interiors, 118, 273–290.

    Article  Google Scholar 

  • Shaw, D.M., 1970, Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta, 34, 237–243.

    Article  Google Scholar 

  • Sprung, P., Schuth, S., Münker, C., and Hoke, L., 2007, Intraplate volcanism in New Zealand: the role of fossil plume material and variable lithospheric properties. Contribution to Mineralogy and Petrology, 153, 669–687.

    Article  Google Scholar 

  • Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J., Bradshaw, J.D., and Kelley, S., 1999, Mantle plumes and Antarctica–New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society, London, 156, 659–671.

    Article  Google Scholar 

  • Storti, F., Rossetti, F., Salvini, F., and Phipps Morgan, J., 2007, Intraplate termination of transform faulting within the Antarctic continent. Earth and Planetary Science Letters, 260, 115–126.

    Article  Google Scholar 

  • Stracke, A., 2012, Earth’s heterogeneous mantle: a product of convection- driven interaction between crust and mantle. Chemical Geology, 330–331, 274–299.

    Article  Google Scholar 

  • Tang, Y.-J., Zhang, H.-F., and Ying, J.-F., 2006, Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233, 309–327.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.

    Google Scholar 

  • Timm, C., Hoernle, K., Bogaard, P.V.D., Bindemann, I., and Weaver, S.D., 2009, Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts. Journal of Petrology, 50, 989–1023.

    Article  Google Scholar 

  • Timm, C., Hoernle, K., Werner, R., Hauff, F., Bogaard, P.V.D., White, J., Mortimer, N., and Garbe-Schnberg, D., 2010, Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Science Reviews, 98, 38–64.

    Article  Google Scholar 

  • Tonarini, S., Rocchi, S., Armienti, P., and Innocenti, F., 1997, Constraints on timing of Ross Sea rifting inferred from Cenozoic intrusions from northern Victoria Land, Antarctica. In: Ricci, C.A. (ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antarctica publication, Siena, p. 511–521.

    Google Scholar 

  • Trønnes, R.G., 2002, Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineralogy and Petrology, 74, 129–148.

    Article  Google Scholar 

  • Vlastélic, I., Dosso, L., Bougault, H., Aslanian, D., Géli, L., Etoubleau, J., Bohn, M., Joron, J.-L., and Bollinger, C., 2000, Chemical systematics of an intermediate spreading ridge: The Pacific- Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 105, 2915–2936.

    Article  Google Scholar 

  • Weinstein, Y., Navon, O., Altherr, R., and Stein, M., 2006, The role of lithospheric mantle heterogeneity in the generation of Plio–Pleistocene alkali basaltic suites from NW Harrat Ash Shaam (Israel). Journal of Petrology, 47, 1017–1050.

    Article  Google Scholar 

  • Willbold, M. and Stracke, A., 2010, Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 276, 188–197.

    Article  Google Scholar 

  • Wilson, M. and Patterson, R., 2001, Intraplate magmatism related to short-wavelength convective instabilities in the upper mantle: evidence from the Tertiary–Quaternary volcanic province of western and central Europe. In: Ernst, R.E. and Buchan, K.L. (eds.), Mantle Plumes: Their Identification Through Time. Geological Society of America Special Paper 352, Boulder, Colorado, p. 37–58.

    Google Scholar 

  • Woodhead, J.D., Volker, F., and McCulloch, M.T., 1995, Routine lead isotope determinations using a lead-207–lead-204 double spike: a long-term assessment of analytical precision and accuracy. Analyst, 120, 35–39.

    Article  Google Scholar 

  • Yan, J. and Zhao, J.X., 2008, Cenozoic alkali basalts from Jingpohu, NE china: the role of lithosphere-asthenosphere interaction. Journal of Asian Earth Sciences, 33, 106–121.

    Article  Google Scholar 

  • Zindler, A. and Hart, S.R., 1986, Chemical geodynamics. Annual Reviews of Earth Planetary Sciences, 14, 493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.J., Lee, J.I., Kim, T.H. et al. Age, geochemistry and Sr-Nd-Pb isotopic compositions of alkali volcanic rocks from Mt. Melbourne and the western Ross Sea, Antarctica. Geosci J 19, 681–695 (2015). https://doi.org/10.1007/s12303-015-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-015-0061-y

Key words

Navigation