Skip to main content
Log in

Change detection in synthetic aperture radar images based on evolutionary multiobjective optimization with ensemble learning

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

This paper presents an unsupervised change detection approach for synthetic aperture radar (SAR) images based on a multiobjective clustering algorithm and selective ensemble strategy. A multiobjective clustering method based on the nondominated neighbor immune algorithm is proposed for classifying changed and unchanged regions in the difference image, which aims at reducing the effect of speckle noise and enhancing the cluster performance. The proposed multiobjective clustering method generates a set of mutually intermediate clustering solutions, which correspond to different trade-offs between the two objectives: restraining noise and preserving detail. Then the selective ensemble strategy is introduced to integrated theses intermediate change detection results. Experiments on real SAR images show that the proposed change detection method based on multiobjective clustering reduces the effect of speckle noise and enhancing the cluster performance. In general, the proposed method makes a balance between noise-immunity and the preservation of image detail. The final change detection results obtained by the selective ensemble strategy exhibit lower errors than other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithm: a systematic survey. IEEE Trans Image Process 14(3):294–307

    Article  MathSciNet  Google Scholar 

  2. Bruzzone L, Prieto DF (2002) An adaptive semiparametric and context-based approach to unsupervised change detection in multi-temporal remote-sensing images. IEEE Trans Image Process 11(4):452–466

    Article  Google Scholar 

  3. Bujor F, Trouvé E, Valet L, Nicolas JM, Rudant JP (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 42(10):2073–2084

    Article  Google Scholar 

  4. Chatelain F, Tourneret J-Y, Inglada J (2008) Change detection in multisensor SAR images using bivariate Gamma distributions. IEEE Trans Image Process 17(3):249–258

    Article  MathSciNet  Google Scholar 

  5. Robin A, Moisan L, Le Hegarat-Mascle S (2010) An a-contrario approach for subpixel change detection in satellite imagery. IEEE Trans Pattern Anal Mach Intell 32(11):1977–1993

    Article  Google Scholar 

  6. Ban Y, Yousif O (2012) Multitemporal spaceborne SAR data for urban change detection in China. IEEE J Sel Topics Appl Earth Observ Remote Sens 5(4):1087–1094

    Article  Google Scholar 

  7. Yousif O, Ban Y (2013) Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans Geosci Remote Sens 51(4):2032–2041

    Article  Google Scholar 

  8. Huang X, Zhang L, Zhu T (2014) Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(1):105–115

    Article  Google Scholar 

  9. Zhong Y, Liu W, Zhao J, Zhang L (2015) Change detection based on pulse-coupled neural networks and the NMI feature for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 12(3):537–541

    Article  Google Scholar 

  10. Li H, Gong M, Liu J (2015) A local statistical fuzzy active contour model for change detection. IEEE Geosci Remote Sens Lett 12(3):582–586

    Article  Google Scholar 

  11. Bosc M, Heitz F, Armspach JP, Namer I, Gounot D, Rumbach L (2003) Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution. Neuroimage 20(2):643–656

    Article  Google Scholar 

  12. Rey D, Subsol G, Delingette H, Ayache N (2002) Automatic detection and segmentation of evolving processes in 3-D medical images: application to multiple sclerosis. Med Image Anal 6(2):163–179

    Article  Google Scholar 

  13. Tsai DM, Lai SC (2009) Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process 18(1):158–167

    Article  MathSciNet  Google Scholar 

  14. Ho SS, Wechsler H (2010) A martingale framework for detecting changes in data streams by testing exchangeability. IEEE Trans Pattern Anal Mach Intell 32(12):2113–2127

    Article  Google Scholar 

  15. Gong M, Su L, Jia M (2014) Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans Fuzzy Syst 22(1):98–109

    Article  Google Scholar 

  16. Wan L, Tang K, Li M, Zhong Y, Qin AK (2015) Collaborative active and semi-supervised learning for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 53(5):2384–2396

    Article  Google Scholar 

  17. Qin AK, Clausi DA (2010) Multivariate image segmentation based on semantic region growing with adaptive edge penalty. IEEE Trans Image Process 19(8):2157–2170

    Article  MathSciNet  Google Scholar 

  18. Dunn J (1974) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57

    Article  MathSciNet  Google Scholar 

  19. Ahmed M, Yamany S, Mohamed N, Farag A, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imag 21(3):193–199

    Article  Google Scholar 

  20. Chen S, Zhang D (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern Part B Cybern 34(4):1907–1916

    Article  Google Scholar 

  21. Szilagyi L, Benyo Z, Szilagyii S, Adam H (2003) MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: Proceedings of 25th Annual International Conference IEEE EMBS, pp 17–21

  22. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 40(3):825–838

    Article  MATH  Google Scholar 

  23. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

  24. Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151

    Article  MathSciNet  Google Scholar 

  25. Celik T, Lee Hwee Kuan (2007) Comments on a robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 22(3):1258–1261

    Article  MathSciNet  Google Scholar 

  26. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  27. Handl J, Knowles J (2013) An evolutionary approach to multiobjective clustering. IEEE Trans Evol Comput 11(1):56–76

    Article  Google Scholar 

  28. Gong M, Zhang L, Jiao L (2007) Solving multiobjective clustering using an immune-inspired algorithms. IEEE Congr Evol Comput 22(1):15–22

    Google Scholar 

  29. Bandyopadhyay S, Maulik U, Mukhopadhyay A (2007) Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens 45(5):1506–1511

    Article  Google Scholar 

  30. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  31. Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) Multiobjective genetic clustering with ensemble among Pareto front solutions: application to MRI brain image segmentation. In: Proceedings of International Conference on Advances in Pattern Recognition, pp 236–239

  32. Gong M, Jiao L, Du C, Bo L (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225–255

    Article  Google Scholar 

  33. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a dataset via the gap statistic. R Stat Soc Ser B 63(2):411–423

    Article  MATH  MathSciNet  Google Scholar 

  34. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654

    Article  Google Scholar 

  35. Zhou Z (2009) Ensemble learning. Encyclopedia of biometrics. Springer, Berlin, pp 270–273

    Google Scholar 

  36. Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitioning. Mach Learn Res 3:583–617

    MathSciNet  Google Scholar 

  37. Zhou Z, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263

    Article  MATH  MathSciNet  Google Scholar 

  38. Handl J, Knowles J (2006) Multiobjective clustering and cluster validation. Multi-Object Mach Learn 16:21–47

    Article  Google Scholar 

  39. Zhang C, Ma Y (2012) Ensemble machine learning: methods and applications. Springer, Berlin

    Book  Google Scholar 

  40. Giacinto FG, Roli F (2001) An approach to the automatic design of multiple classifier systems. Pattern Recognit Lett 22(1):25–33

  41. Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: Proceedings of IJCNN, pp 796–801

  42. Brylla R, Gutierrez-Osunab R, Queka F (2003) Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognit 36(6):1291–1302

    Article  Google Scholar 

  43. Martínez-Muñoz G, Hernández-Lobato D, Suárez A (2009) An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans Pattern Anal Mach Intell 31(2):245–259

    Article  Google Scholar 

  44. Giacinto G, Roli F (2001) Dynamic classifier selection based on multiple classifier behavior. Pattern Recognit 34(9):1879–1881

    Article  MATH  Google Scholar 

  45. Dos Santos EM, Sabourin R, Maupin P (2008) A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit 41(10):2993–3009

    Article  MATH  Google Scholar 

  46. Zhou Z, Tang W (2003) Selective ensemble of decision trees. In: Proceedings of IEEE RSFDGC, pp 476–483

  47. Lu Z, Wu X, Zhu X, Bongard J (2010) Ensemble pruning via individual contribution ordering. In: Proceedings in Washington, DC, USA, KDD

  48. Soto V, Garcia-Moratilla S, Martinez-Munoz G, Hernandez-Lobato D, Suarez A (2014) A double pruning scheme for boosting ensembles. IEEE Trans Cybern 44(12):2682–2695

    Article  Google Scholar 

  49. Rosin PL, Ioannidis E (2003) Evaluation of global image thresholding for change detection. Pattern Recognit Lett 24(14):2345–2356

    Article  MATH  Google Scholar 

  50. Rosenfield GH, Fitzpatrick-Lins A (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52(2):223–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ma, J., Gong, M. et al. Change detection in synthetic aperture radar images based on evolutionary multiobjective optimization with ensemble learning. Memetic Comp. 7, 275–289 (2015). https://doi.org/10.1007/s12293-015-0165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0165-y

Keywords

Navigation