Skip to main content
Log in

Supplementation of α-Tocopherol Attenuates Minerals Disturbance, Oxidative Stress and Apoptosis Occurring in Favism

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The favism is a metabolic disease that characterized with an acute hemolytic anemia where α-tocopherol is a type of tocopherol accumulated inside the human body. The objective of such a study was established to evaluate the effect of α-tocopherol in favism disorders. A total of 75 human cases were divided into 5 groups as follow; group 1 normal cases without any treatment and group 2 normal cases orally administrated α-tocopherol (200 mg/kg) once a day over 30 days period. Group 3 favism patients without any treatment. Groups 4 and 5 favism patients orally administrated 100 and 200 mg α-tocopherol/kg, respectively once a day over 30 days period. The results obtained revealed that oral administration of α-tocopherol into normal cases over 30 days period did not induce any biological change. In favism, hemoglobin, hematocrit, red and white blood cells, serum glucose, glucose-6-phosphate dehydrogenase, total protein, albumin, globulin, aspartate and alanine aminotransferases, blood glutathione, superoxide dismutase, glutathione peroxidase and serum calcium, phosphorous, sodium, potassium and chloride levels were significantly decreased. On the other hand, serum alkaline phosphatase, bilirubin, selenium, zinc, manganese, copper and iron, malondialdehyde levels showed significant increase in favism. Supplementation with α-tocopherol into favism restores all the above mentioned parameters to approach the normal levels. Also, α-tocopherol has anti-apoptotic effect in favism. In conclusion, α-tocopherol attenuates minerals disturbance, oxidative stress and apoptosis occurring in favism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McMillan DC, Jollow DJ. Favism: divicine hemotoxicity in the rat. Toxicol Sci. 1999;51(2):310–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bicakci Z. A hemolysis trigger in glucose-6-phosphate dehydrogenase enzyme deficiency. Vicia sativa (Vetch). Saudi Med J. 2009;30(2):292–4.

    PubMed  Google Scholar 

  3. Hegazy MI, Marquardt RR. Metabolism of vicine and convicine in rat tissues: absorption and excretion patterns and site of hydrolysis. J Sci Food Agric. 1984;35:139–46.

    Article  CAS  PubMed  Google Scholar 

  4. Arbid MS, Marquardt RR. Effect of intraperitoneally injected vicine and convicine on the rats: Induction of favism-like sign. J Sci Food Agric. 1986;37:539–47.

    Article  CAS  Google Scholar 

  5. Albano E, Tomasi A, Mannuzzu L, Arese P. Detection of free radical intermediate from divicine of Vicia faba. Biochem Pharmacol. 1984;33:1701–4.

    Article  CAS  PubMed  Google Scholar 

  6. Marquardt RR. Vicine, convicine and their role aglycones-divine and isouramil. In: Cheeke P, editor. Toxicants of plant origin. 2nd ed. Boca Raton: CRC Press; 1989. p. 614–23.

    Google Scholar 

  7. Gutierrez N, Avila CM, Duc G, Marget P, Suso MJ, Moreno MT, et al. CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor Appl Genet. 2006;114:59–66.

    Article  CAS  PubMed  Google Scholar 

  8. Arbid MS, Koriem KMM, Asaad GF, Megahed HA. Effect of the antibiotic neomycin on the toxicity of the glycoside vicine in rats. J Toxicol. 2013;2013:8, Art ID 913128.

    Article  Google Scholar 

  9. Koriem KMM, Arbid MS, El-Gendy NF. The protective role of anise oil in oxidative stress and genotoxicity produced in favism. J Diet Suppl. 2016;13(5):505–21.

    Article  CAS  PubMed  Google Scholar 

  10. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol Aspects Med. 2007;28(5–6):423–36.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen S, Lauridsen C. α-Tocopherol stereoisomers. Vitam Horm. 2007;76:281–308.

    Article  CAS  PubMed  Google Scholar 

  12. Qu YH, Fu JC, Liu K, Zuo ZY, Jia HN, Ma Y, et al. Screening of α-tocopherol transfer protein sensitive genes in human hepatoma cells (HepG2). Int J Mol Sci. 2016; 17(7).

  13. Galabov AS, Mileva M, Simeonova L, Gegova G. Combination activity of neuraminidase inhibitor oseltamivir and α-tocopherol in influenza virus A (H3N2) infection in mice. Antivir Chem Chemother. 2016. [Epub ahead of print].

  14. Sinkalu VO, Ayo JO. Combined effects of retinol, ascorbic acid and α-tocopherol on diurnal variations in rectal temperature of Black Harco pullets subjected to heat stress. Int J Biometeorol. 2016. [Epub ahead of print].

  15. Tintino SR, Morais-Tintino CD, Campina FF, Pereira RL, Costa Mdo S, Braga MF, et al. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps. EXCLI J. 2016;15:315–22.

    PubMed  PubMed Central  Google Scholar 

  16. Lin JY, Ling KFL. Studies on favism I. Isolation of an active principle from faba beans (Vicia faba L.). J Formosan Med Assoc. 1962;61:484–9.

    CAS  Google Scholar 

  17. Arbid MSS, Marquardt RR. Favism-like effects of divicine and isouramil in the rat: acute and chronic effects on animal health, mortalities, blood parameters and ability to exchange respiratory gases. J Sci Food Agric. 1988;43:75–90.

    Article  CAS  Google Scholar 

  18. Koriem KMM, Megahed HA, Arbid MS. Evaluation of some adverse effects of the glycoside convicine in Sprague-Dawley rats. Toxicol Environ Chem. 2008;90:415–20.

    Article  CAS  Google Scholar 

  19. Kaneko JJ. Clinical biochemistry of domestic animals. 3rd ed. New York: Academic Press; 1980. p. 490–501.

    Google Scholar 

  20. Perman V. Synovial fluid. In: Kaneko J, editor. Clinical biochemistry of domestic animals. 3rd ed. New York: Academic Press; 1980. p. 142–7.

    Google Scholar 

  21. Beutler E. Hemolytic anemia in disorders of red cell metabolism. In: Win- trobe MM, editor. Topics in hematology. New York: Plenum Publishing; 1978. p. 199–209.

    Google Scholar 

  22. Kasperczyk S, Dobrakowski M, Kasperczyk A, Nogaj E, Boroń M, Birkner E. The effects of α-tocopherol administration in chronically lead exposed workers. Environ Toxicol Pharmacol. 2016;43:175–81.

    Article  CAS  PubMed  Google Scholar 

  23. Comporti M. Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest. 1985;53:599–623.

    CAS  PubMed  Google Scholar 

  24. Koriem KMM, Arbid MS, El-Gendy NF. The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats. Toxicol Mech Meth. 2010;20:579–86.

    Article  CAS  Google Scholar 

  25. Wong WY, Ward LC, Fong CW, Yap WN, Brown L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr. 2015. [Epub ahead of print].

  26. Kim SK, Im GJ, An YS, Lee SH, Jung HH, Park SY. The effects of the antioxidant α-tocopherol succinate on cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int J Pediatr Otorhinolaryngol. 2016;86:9–14.

    Article  PubMed  Google Scholar 

  27. Shin SM, Razdan B, Mishra OP, Johnson L, Delivoria-Papadopoulos M. Protective effect of alpha-tocopherol on brain cell membrane function during cerebral cortical hypoxia in newborn piglets. Brain Res. 1994;653:45–50.

    Article  CAS  PubMed  Google Scholar 

  28. Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, et al. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis. 2013;4:e616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Do MH, Kim SN, Seo SY, Yeo EJ, Kim SY. δ-Tocopherol prevents methylglyoxal-induced apoptosis by reducing ROS generation and inhibiting apoptotic signaling cascades in human umbilical vein endothelial cells. Food Funct. 2015;6:1568–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding was provided by National Research Centre, Egypt (Grant No. 21349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. M. Koriem.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koriem, K.M.M., Arbid, M.S. & Gomaa, N.E. Supplementation of α-Tocopherol Attenuates Minerals Disturbance, Oxidative Stress and Apoptosis Occurring in Favism. Ind J Clin Biochem 32, 446–452 (2017). https://doi.org/10.1007/s12291-016-0623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0623-4

Keywords

Navigation