Skip to main content

Advertisement

Log in

Circadian Periodicity of Circulating Plasma Lipid Peroxides, Uric Acid and Ascorbic Acid in Renal Stone Formers

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Circadian periodicity of plasma lipid peroxides and serum ascorbic acid and uric acid levels were studied in one hundred renal stone formers (55 women and 45 men; age 20–60 years) and 50 clinically healthy volunteers (21 women and 29 men; age 21–45 years) with diurnal activity from 06:00 to 22:00 and nocturnal rest. A marked circadian variation was demonstrated by population-mean-cosinor for all studied variables in stone formers and healthy subjects. By comparison to the healthy controls, parameter tests indicate that the stone formers had a higher MESOR (±SE) of MDA (2.90 ± 0.03 vs. 2.28 ± 0.06; F = 94.929, p < 0.001), a lower MESOR of serum ascorbic acid (0.722 ± 0.010 vs. 0.839 ± 0.10; F = 32.083, p < 0.001), and a similar MESOR of serum uric acid. Furthermore, the patients also differed from the healthy subjects in terms of their circadian amplitude and acrophase (tested jointly) of all three variables (p < 0.001). The demonstration herein of a circadian rhythm in MDA, serum ascorbic and uric acid suggests that these variables could also serve as markers to optimize the timing of treatment and to assess the patient’s response to treatment for further management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar V, Cotran RS, Robbins SL. Basic pathology. 7th ed. St. Louis: SAUNDERS; 2002. p. 536–7.

    Google Scholar 

  2. Abbagani S, Gundimeda SD, Varre S, Ponnala D, Mundluru HP. Kidney stone disease: etiology and evaluation. Int J Appl Biol Pharm Technol. 2010;1(1):175–82.

    Google Scholar 

  3. Robertson WG. Urinary tract calculi. In: Nordin BEC, Need AG, Morros HA, editors. Metabolic bone and stone disease. Edinburgh: Churchill Livingstone; 1993. p. 249–311.

    Google Scholar 

  4. Sutherland JW, Parks JH, Coe FL. Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab. 1985;11:267–9.

    CAS  PubMed  Google Scholar 

  5. Holoch PA, Tracy CR. Antioxidants and self-reported history of kidney stones: the National Health and Nutrition Examination Survey. J Endourol. 2011;25(12):1903–8.

    Article  PubMed  Google Scholar 

  6. Davision A, Cameron J, Grunfeld J. Oxford text book of nephrology. 3rd ed. Oxford: Oxford University Press; 2005. p. 1199–210.

    Google Scholar 

  7. Touitou Y, Touitou C, Charransol G, Reinberg A, Thomas J, Bogdan A, et al. Alterations in circadian rhythmicity in calcium oxalate stone formers. Int J Chronobiol. 1983;8(3):175–92.

    CAS  PubMed  Google Scholar 

  8. Breg W, Brunding P, Bothor C, Schneider HJ. Biological rhythmicity and crystallization. Urine profiles and Se-studies on calcium oxalate stone genesis. Int Urol Nephrol. 1982;14(4):363–72.

    Article  Google Scholar 

  9. Coe FL, Kavalach AG. Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis. N Engl J Med. 1974;291(25):1344–50.

    Article  CAS  PubMed  Google Scholar 

  10. Gutman AB, Yu TF. Uric acid nephrolithiasis. Am J Med. 1968;45(5):756–79.

    Article  CAS  PubMed  Google Scholar 

  11. Prien EL, Prien EL Jr. Composition and structure of urinary stone. Am J Med. 1968;45:654–72.

    Article  CAS  PubMed  Google Scholar 

  12. Galecka E, Jacewicz R, Mrowicka M. Antioxidative enzymes—structure, properties, functions. Pol Merkur Lekarski. 2008;25:266–8.

    CAS  PubMed  Google Scholar 

  13. Singh PP, Barjatiya MK. Peroxidative stress and antioxidant status in relation to age in normal population and renal stone formers. Ind J Nephrol. 2002;12:10–5.

    Google Scholar 

  14. Tiselius HG, Larsson L. Urinary excretion of urate in patients with calcium oxalate stone disease. Urol Res. 1983;11:279–83.

    Article  CAS  PubMed  Google Scholar 

  15. Singh RK, Bansal A. Studies on circadian periodicity of serum and urinary urate in healthy Indians and renal stone formers. Prog Clin Biol Res. 1987;227B:305–13.

    CAS  PubMed  Google Scholar 

  16. Lang F, Greger R, Oberleithner H, Griss E, Lang K, Pastner D, et al. Renal handling of urate in healthy man in hyperuricaemia and renal insufficiency: circadian fluctuation, effect of water diuresis and of uricosuric agents. Europ J Clin Invest. 1980;10:285–92.

    Article  CAS  PubMed  Google Scholar 

  17. Schneeberger W, Bach D, Heasse A, Dewes W, Vahlensieck W. In: Smith LH, Robertson WG, Finlayson B, editors. Urolithiasis-clinical and basic research. New York: Plenum Press; 1981.

    Google Scholar 

  18. Singh R, Singh RK, Tripathi AK, Gupta N, Kumar A, Singh AK, et al. Circadian periodicity of plasma lipid peroxides and antioxidant enzymes in pulmonary tuberculosis. Ind J Clin Biochem. 2004;19(1):14–20.

    Article  CAS  Google Scholar 

  19. Singh R, Singh RK, Mahdi AA, Singh RK, Kumar A, Tripathi AK, et al. Circadian periodicity of plasma lipid peroxides and other antioxidants as putative markers in gynecological malignancies. In Vivo. 2003;17:593–600.

    CAS  PubMed  Google Scholar 

  20. Singh R, Singh RK, Tripathi AK, Cornelissen G, Schartzkopff O, Otsuka K, et al. Chronomics of circulating plasma lipid peroxides, antioxidant enzymes and other related molecules in cirrhosis of liver: in memory of late Shri Chetan Singh. Biomed Pharmacother. 2005;59(1):S229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh R, Singh Rajesh K, Masood T, Tripathi AK, Mahdi AA, Singh RK, et al. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcer. Clin Chim Acta. 2015;451(B):222–6.

    Article  CAS  PubMed  Google Scholar 

  22. Singh R, Sharma S, Singh RK, Cornelissen G. Circadian time structure of circulating plasma lipid components in healthy Indians of different age groups. Ind J Clin Biochem. 2016;31(2):215–23.

    Article  CAS  Google Scholar 

  23. Singh R, Sharma S, Singh RK, Mahdi AA, Singh RK, Gierke LC, et al. Effect of gender, age, diet and smoking status on chronomics of circulating plasma lipid components in healthy Indians. Clin Chim Acta. 2016;459:10–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  25. Natelson S. Techniques of clinical chemistry. 3rd ed. Springfield: Charles C Thomas; 1971. p. 165–6.

  26. Eichhorn F, Zelmanowski S, Lew E, Rutenberg A, Fanias B. Improvement of the uric acid determination by the carbonate method for serum and urine. J Clin Pathol. 1961;14:450–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halberg F, Johnson EA, Nelson W, Runge W, Sothern R. Autorhythmometry-procedures for physiologic self-measurements and their analysis. Physiol Teacher. 1972;1:1–11.

    Google Scholar 

  28. Bingham C, Arbogast B, Cornelissen G, Lee JK, Halberg F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 1982;9:397–439.

    CAS  PubMed  Google Scholar 

  29. Cornelissen G, Halberg F. Chronomedicine. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics, vol. 1. Chichester: Wiley; 1998. p. 642–9.

    Google Scholar 

  30. Kato J, Ruram AA, Singh SS, Devi SB, Devi TI, Singh WG. Lipid peroxidation and antioxidant vitamins in urolithiasis. Ind J Clin Biochem. 2007;22(1):128–30.

    Article  CAS  Google Scholar 

  31. Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005;33(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ma MC, Chen YS, Huang HS. Erythrocyte oxidative stress in patients with calcium oxalate stone correlates with stone size and renal tubular damage. Urology. 2014;83(2):510–7.

    Article  Google Scholar 

  33. Chalmeu AH, Cowley DM, Brown JM. A possible etiological role of ascorbate in calculi formation. Clin Chem. 1986;32:333–6.

    Google Scholar 

  34. Massey LK, Liebman M, Kynast GS. Ascrobate increases human oxaluria and kidney stone risk. J Nutr. 2005;135:1673–7.

    CAS  PubMed  Google Scholar 

  35. Jakeslko I, Porowski I, Zoch ZW, Wasilewska AM, Hackiewicz L. Assessment of oxalate concentration in serum and urine of children with renal stones. Wiad Lek. 2005;58:20–4.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hon. Chairman, Shri Guru Ram Rai Education Mission for his constant support and guidance in pursuing such studies in our laboratory. We are also indebted to the staff of the Department of Biochemistry, SGRR Institute of Medical and Health Sciences for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Singh.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, R.S., Gupta, R.C., Sharma, J.P. et al. Circadian Periodicity of Circulating Plasma Lipid Peroxides, Uric Acid and Ascorbic Acid in Renal Stone Formers. Ind J Clin Biochem 32, 220–224 (2017). https://doi.org/10.1007/s12291-016-0594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0594-5

Keywords

Navigation