Skip to main content
Log in

Free Radical Scavenging Properties of Skin and Pulp Extracts of Different Grape Cultivars In Vitro and Attenuation of H2O2-Induced Oxidative Stress in Liver Tissue Ex Vivo

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol. 2003;81:1013–28.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K. Cross talk of nitric oxide, oxygen radicals, and superoxide dismutase regulates the energy metabolism and cell death and determines the fates of aerobic life. Antioxid Redox Signal. 2003;5(4):475–84.

    Article  CAS  PubMed  Google Scholar 

  3. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97–110.

    Article  CAS  PubMed  Google Scholar 

  4. Reddy SV, Suchitra MM, Reddy YM, Reddy PE. Beneficial and detrimental actions of free radicals: a review. J Global Pharma Technol. 2010;2:3–11.

    CAS  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas CE, Kalyanaraman B, editors. Oxygen radicals and the disease process. The Netherlands: Hardwood Academic Publishers; 1997.

    Google Scholar 

  7. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.

    CAS  PubMed  Google Scholar 

  8. Förstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338–49.

    Article  PubMed  Google Scholar 

  9. la Cruz AA, Hilbert G, Mengin V, Rivière C, Ollat N, Vitrac C, Bordenave L, Decroocq S, Delaunay JC, Mérillon JM, Monti JP, Gomès E, Richard T. Anthocyanin phytochemical profiles and anti-oxidant activities of Vitis candicans and Vitis doaniana. Phytochem Anal. 2013;24(5):446–52.

    Article  PubMed  Google Scholar 

  10. Waterhouse AL. Wine phenolics. Ann NY Acad Sci. 2002;957:21–36.

    Article  CAS  PubMed  Google Scholar 

  11. De Nisco M, Manfra M, Bolognese A, Sofo A, Scopa A, Tenore GC, Pagano F, Milite C, Russo MT. Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico). Food Chem. 2013;140(4):623–9.

    Article  PubMed  Google Scholar 

  12. Shikhamany SD. Grape production in India. http://www.fao.org/docrep/003/x6897e/x6897e06.htm.

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin Phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  14. Hedge JE, Hofreiter BT. Determination of total carbohydrate by anthrone method. In: Whistler RL, BeMiller JN, editors. Carbohydrate chemistry. New York: Academic Press; 1962. p. 17.

    Google Scholar 

  15. Olliver M. Ascorbic acid estimation. In: Sobrell WH, Harris RS, editors. The vitamins. New York: Academic Press; 1967. p. 338.

    Google Scholar 

  16. Weidner S, Powałka A, Karamać M, Amarowicz R. Extracts of phenolic compounds from seeds of three wild grapevines—comparison of their antioxidant activities and the content of phenolic compounds. Int J Mol Sci. 2012;13:3444–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Vanden Berghe D. Structure-activity relationship and classification of flavonoids as inhibitors of Xanthine oxidase and superoxide scavengers. J Nat Prod. 1988;61:71–6.

    Article  Google Scholar 

  18. Shabbir M, Khan MR, Saeed N. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves. BMC Complement Altern Med. 2013;13:143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ruch RJ, Cheng SJ, Klaunig JE. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 1989;10:1003–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sinnhuber RO, Yu TC, Yu TC. Characterization of the red pigment formed in the thiobarbituric acid determination of oxidative rancidity. Food Res. 1958;23:626–30.

    Article  CAS  Google Scholar 

  21. Kleinbongard P, Rasaf T, Dejam A, Kerber S, Kelm M. Griess method for nitrite measurement of aqueous and protein containing sample. Meth Enzymol. 2002;359:158–68.

    CAS  PubMed  Google Scholar 

  22. Ellman GL. The sulphydryl groups. Arch Biochem Biophys. 1959;32:70–7.

    Article  Google Scholar 

  23. Das SK, Vasudevan DM. Modulation of lecithin activity by vitamin-B complex to treat on ethanol induced oxidative stress in liver. Indian J Exp Biol. 2006;44:791–801.

    CAS  PubMed  Google Scholar 

  24. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxides. J Lab Clin Med. 1967;70:158–9.

    CAS  PubMed  Google Scholar 

  25. Goldberg MD, Spooner JR. Glutathione reductase. In: Bergmayer HU, Bergmayer J, Grabi M, editors. Methods enzyme analysis, vol. III, 3rd edn. Florida: Academic Press, Inc.; 1983. p. 258–65.

  26. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    CAS  PubMed  Google Scholar 

  27. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523–6.

    Article  CAS  PubMed  Google Scholar 

  28. Soleas GJ, Diamandis EP, Goldberg DM. Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal. 1997;11(5):287–313.

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr. 2013;53(11):1202–25.

    Article  CAS  PubMed  Google Scholar 

  30. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Piscopo V, Caputo R, Monaco P. Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) Peels. J Agric Food Chem. 2008;56:2660–7.

    Article  CAS  PubMed  Google Scholar 

  31. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols ineehumans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1):230S–42S.

    CAS  PubMed  Google Scholar 

  32. de Campos Luanda MAS, Fernanda VL, Rozangela CP, Sandra RS. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour Technol. 2008;99:8413–20.

    Article  PubMed  Google Scholar 

  33. Sun T, Ho CT. Antioxidant activities of buckwheat extracts. Food Chem. 2005;90:743–9.

    Article  CAS  Google Scholar 

  34. Garcia-Alonso FJ, Guidarelli A, Periago MJ. Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tert-butylhydroperoxide in U937 cells: the role of iron chelation. J Nutr Biochem. 2007;18(7):457–66.

    Article  CAS  PubMed  Google Scholar 

  35. Correia HS, Batista MT, Dinis TC. The activity of an extract and fraction of Agrimonia eupatoria L. against reactive species. BioFactors. 2007;29(2–3):91–104.

    Article  CAS  PubMed  Google Scholar 

  36. Bunea CI, Pop N, Babeş AC, Matea C, Dulf FV, Bunea A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem Cent J. 2012;6(1):66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Caillet S, Salmieri S, Lacroix M. Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chem. 2006;95:1–8.

    Article  CAS  Google Scholar 

  38. Lutz M, Jorquera K, Cancino B, Ruby R, Henriquez C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J Food Sci. 2011;76(7):C1088–93.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang A, Fang Y, Wang H, Li H, Zhang Z. Free-radical scavenging properties and reducing power of grape cane extracts from 11 selected grape cultivars widely grown in china. Molecules. 2011;16:10104–22.

    Article  CAS  PubMed  Google Scholar 

  40. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. London: Oxford University Press; 1999. p. 608–10.

    Google Scholar 

  41. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53:1841–56.

    Article  CAS  PubMed  Google Scholar 

  43. Catania JR, McGarrigle BP, Rittenhouse-Olson K, Olson JR. Induction of CYP2B and CYP2E1 in precision-cut rat liver slices cultured in defined medium. Toxicol In Vitro. 2007;21(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  44. Mari M, Wu D, Nieto N, Cederbaum AI. CYP2E1-dependent toxicity and up-regulation of antioxidant genes. J Biomed Sci. 2001;8(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  45. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31(Suppl 2):S170–80.

    Article  CAS  PubMed  Google Scholar 

  46. Das SK, Vasudevan DM. Effect of ethanol on liver antioxidant defense systems: a dose dependent study. Indian J Clin Biochem. 2005;20(1):80–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance received from the Department of Atomic Energy-Board of Research in Nuclear Studies (2012/35/37/BRNS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, I., Das, S.K. Free Radical Scavenging Properties of Skin and Pulp Extracts of Different Grape Cultivars In Vitro and Attenuation of H2O2-Induced Oxidative Stress in Liver Tissue Ex Vivo. Ind J Clin Biochem 30, 305–312 (2015). https://doi.org/10.1007/s12291-014-0442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-014-0442-4

Keywords

Navigation