Skip to main content
Log in

A simplified model of plain weave fabric reinforcements for the pure shear loading

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

An analytical and non-linear finite element (FE) modelling approach of plain weave fabric reinforcements have been developed to predict shear force for pure shear condition. For simplicity two main components of force for shear deformation has been considered; one is force required for the elastic deformation and another is to overcome the frictional resistance. Coulomb friction model of ANSYS is used in the FE model whereas the boundary condition has been established using Lagrangian description. Modelling of frictional resistance due to contact between yarns and crossover are conducted by utilizing contact pair option in ANSYS. A good agreement between theoretical and FEA model have been obtained. To ensure pure shear deformation in the fabrics it has been proved that there are no stress (von Mises and normal) or tension exist in the deformed yarn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Long AC, Rudd CD, Blagdon M, Smith P (1996) Characterizing the processing and performance of aligned reinforcements during preform manufacture. Compos Part A 27:247–253

    Article  Google Scholar 

  2. Boisse P, Zouari B, Daniel JL (2006) Importance of in-plane shear rigidity in finite element analyses of woven fabric composite performing. Compos Part A 37:2201–2212

    Article  Google Scholar 

  3. Sun H, Pan N (2005) Shear deformation analysis for woven fabrics. Compos Struct 67:317–322

    Article  Google Scholar 

  4. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behavior of woven composite reinforcements. Compos Sci Technol 68:506–515

    Article  Google Scholar 

  5. Sharma SB, Sutcliffe MPF, Chang SH (2003) Characterization of material properties for draping of dry woven composite material. Compos Part A 34:1167–1175

    Article  Google Scholar 

  6. Mohammed U, Lekakou C, Dong L, Bader MG (2000) Shear deformation and micromechanics of woven fabrics. Compos Part A 31:299–308

    Article  Google Scholar 

  7. Daelemans L, Faes J, Allaoui S, Hivet G, Dierick M, Hoorebeke LV, Paepegem WV (2016) Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Compos Sci Technol 137:177–187

    Article  Google Scholar 

  8. Misra RK, Dixit A, Mali HS (2014) Finite element (FE) shear modeling of woven fabric textile composite. Proc Math Sci 6:1344–1350

    Google Scholar 

  9. Munro WA, Carnaby GA, Carr AJ, Moss PJ (1997) Some textile applications of finite-element analysis. J Text Inst 88:325–338

    Article  Google Scholar 

  10. Hu JL, Zhang YT (1997) The KES shear test for fabrics. Text Res J 67:654–664

    Article  Google Scholar 

  11. Asvadi S, Postle R (1994) An analysis of fabric large strain shear behavior using linear viscoelasticity theory. Text Res J 64:208–214

    Article  Google Scholar 

  12. Kawabata S, Niwa M, Kawai H (1973) The finite deformation theory of plain-weave fabrics. Part III. The shear-deformation theory. Text Res J 64:62–85

    Google Scholar 

  13. Page J, Wang J (2000) Prediction of shear force and an analysis of yarn slippage for a plain-weave carbon fabric in a bias extension state. Compos Sci Technol 60:977–986

    Article  Google Scholar 

  14. Sinoimeri A, Drean JY (1996) A study of the mechanical behavior of the plain-weave structure by using energy methods: fabric shear. J Text Inst 87:120–129

    Article  Google Scholar 

  15. McGuiness GB, Bradaigh CM (1998) Characterisation of thermoplastic composite melts in rhombus-shear: the picture frame experiment. Compos Part A 29:115–132

    Article  Google Scholar 

  16. Peng XQ, Cao J, Chen J, Xue P, Lussier DS, Liu L (2004) Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci Technol 64:11–21

    Article  Google Scholar 

  17. Cao J et al (2008) Characterization of mechanical behaviour of woven fabrics: experimental methods and benchmark results. Compos Part A 39:1037–1053

    Article  Google Scholar 

  18. Lomov SV, Verpoest I (2006) Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos Sci Technol 66:919–933

    Article  Google Scholar 

  19. Hearle JWS, Grosberg P, Backer S (1969) Structural mechanics of fibers, Yarns & Fabrics. Wiley, New York

    Google Scholar 

  20. Afrashteh S, Merati AA, Jeddi AAAA (2013) Geometrical parameters of yarn cross-section in plain woven fabric. Indian J Fibre Text Res 38:126–131

    Google Scholar 

  21. Behera BK, Militky J, Mishra R, Kremenakova D (2012) Modeling of woven fabrics geometry and properties. http://cdn.intechopen.com/pdfs/36900.pdf. Accessed 16 May 2012

  22. Ozgen B, Gong H (2010) Yarn geometry in woven fabrics. Text Res J 81:738–745

    Article  Google Scholar 

  23. McBride M, Chen J (1997) Cell geometry in plain weave fabrics. Compos Sci Technol 51:345–351

    Article  Google Scholar 

  24. Luo SY, Chou TW (1990) Finite deformation of composites. Proc R Soc Lond 429:569–586

    Article  MATH  Google Scholar 

  25. Ramgulam RB, Potluri P, Ciurezu D (2008) Tensile & shear deformation modeling of woven fabrics. Int J Mater Form 1:945–948

    Article  Google Scholar 

  26. Szablewski P, Kobza W (2003) Numerical analysis of Pierce’s cantilever test for the bending rigidity of textiles. Fibres Text East Eur 11:54–57

    Google Scholar 

  27. Wang F, Xu G, Xu B (2005) Predicting the shear rigidity of woven fabrics. Text Res J 75:30–34

    Article  Google Scholar 

  28. Freeston WD, Platt MM, Schoppee MM (1967) Mechanics of elastic performance of textile materials, part XVIII: stress strain response of fabrics under two dimensional loading. Text Res J 37:948–975

    Article  Google Scholar 

  29. ANSYS Inc. PDF Documentation for Release 15.0. http://148.204.81.206/Ansys/readme.html. Accessed date: 2015

  30. Lin H, Clifford MJ, Long AC, Sherburn M (2009) Finite element modelling of fabric shear. Model Simul Mater Sci Eng 17:1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munshi Mahbubul Basit.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, M.M., Luo, SY. A simplified model of plain weave fabric reinforcements for the pure shear loading. Int J Mater Form 11, 445–453 (2018). https://doi.org/10.1007/s12289-017-1353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1353-8

Keywords

Navigation