Skip to main content
Log in

Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Conventional sheet metal spinning is an incremental forming process which typically involves the cost-effective and high-quality manufacturing of axissymmetric parts. The process is usually executed by highly skilled and experienced personnel which is able of optimizing the process parameters during production. Numerical simulation of the process can substantially help discovering systematic methodologies for optimal parameter determination and thus enable the full automation of the process using CNC machines. The present work aims to assess the quality of numerical modelling techniques by a direct comparison with metal spinning experiments. Based on the geometry and thickness distribution of intermediate and final stages of a spinned component, which are measured using the Optical 3D Digitization technique, the quality and validity of different numerical modeling approaches are assessed. Subsequently, deformation mechanisms occurring during process are identified, analysed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Runge M (1994) Spinning and flow forming. Leifeld GmbH

  2. Emmens WC, Van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209(8):3688–3695

    Article  Google Scholar 

  3. Music O, Allwood JM, Kawai K (2010) A review of the mechanics of metal spinning. J Mater Process Technol 210(1):3– 23

    Article  Google Scholar 

  4. Li J, Geng P, Shen J (2013) Numerical simulation and experimental investigation of multistage incremental sheet forming. Int J Adv Manuf Technol 68(9-12):2637–2644

    Article  Google Scholar 

  5. Quigley E, Monaghan J (2002) Enhanced finite element models of metal spinning. J Mater Process Technol 121(1):43–49

    Article  Google Scholar 

  6. Liu JH, Yang H, Li YQ (2002) A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces. J Mater Process Technol 129(1):326–329

    Article  Google Scholar 

  7. Kleiner M, Göbel R, Kantz H, Klimmek C, Homberg W (2002) Combined methods for the prediction of dynamic instabilities in sheet metal spinning. CIRP Ann Manuf Technol 51(1):209– 214

    Article  Google Scholar 

  8. Kleiner M, Göbel R, Klimmek C, Heller B, Reitmann V, Kantz H (2004) Wrinkling in sheet metal spinning. Nonlinear Dynamics of Production Systems:287–303

  9. Sebastiani G, Brosius A, Ewers R, Kleiner M, Klimmek C (2006) Numerical investigation on dynamic effects during sheet metal spinning by explicit finite-element-analysis. J Mater Process Technol 177(1):401–403

    Article  Google Scholar 

  10. Sebastiani G, Brosius A, Homberg W, Kleiner M (2007) Process characterization of sheet metal spinning by means of finite elements. Key Eng Mater 344:637–644

    Article  Google Scholar 

  11. Hamilton S, Long H (2008) Analysis of conventional spinning process of a cylindrical part using finite element method. Steel Res Int 79(1):632–639

    Google Scholar 

  12. Essa K, Hartley P (2009) Numerical simulation of single and dual pass conventional spinning processes. Int J Mater Form 2(4):271–281

    Article  Google Scholar 

  13. Essa K, Hartley P (2010) Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis. Proc Inst Mech Eng B J Eng Manuf 224(11):1691–1705

    Article  Google Scholar 

  14. Beni HR, Beni YT, Biglari FR (2011) An experimental-numerical investigation of a metal spinning process. Proc Inst Mech Eng C J Mech Eng Sci 225(3):509–519

    Article  Google Scholar 

  15. Wang L, Long H (2011) Investigation of material deformation in multi-pass conventional metal spinning. Mater Des 32(5):2891–2899

    Article  MathSciNet  Google Scholar 

  16. Wang L, Long H (2011) A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning. J Mater Process Technol 211(12):2140– 2151

    Article  Google Scholar 

  17. Wang L, Long H (2011) Investigation of effects of roller path profiles on wrinkling in conventional spinning. In: Proceedings of 10th international conference on technology of plasticity, Aachen, Germany

  18. Wang L, Long H, Ashley D, Roberts M, White P (2011) Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup. Proc Inst Mech Eng B J Eng Manuf:0954405410396024

  19. Watson M, Long H (2014) Wrinkling failure mechanics in metal spinning. Procedia Engineering 81:2391–2396

    Article  Google Scholar 

  20. Watson M, Long H, Lu B (2014) Investigation of wrinkling failure mechanics in metal spinning by box-behnken design of experiments using finite element method. Int J Adv Manuf Technol:1– 15

  21. Wang L, Long H (2013) Roller path design by tool compensation in multi-pass conventional spinning. Mater Des 46:645–653

    Article  Google Scholar 

  22. Shi F, Long H, Zhan M, Ou H (2014) Uncertainty analysis on process responses of conventional spinning using finite element method. Struct Multidiscip Optim 49(5):839–850

    Article  Google Scholar 

  23. Ahmed KI, Gadala MS, El-Sebaie MG (2015) Deep spinning of sheet metals. Int J Mach Tools Manuf 97:72–85

    Article  Google Scholar 

  24. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress yield function for aluminum alloy sheets-part 1: theory. Int J Plast 19(9):1297– 1319

    Article  MATH  Google Scholar 

  25. Wang L, Long H, Ashley D, Roberts M, White P (2010) Analysis of single-pass conventional spinning by taguchi and finite element methods. Steel Res Int 81(9):974–977

    Google Scholar 

  26. Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Methods Eng 63(10):1436–1445

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Manopulo.

Ethics declarations

The present work has been carried out in the scope of the Project Nr. 17231.1 PFIW-IW funded by the Swiss Federal Commision for Technology and Innovation (CTI). The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentsch, B., Manopulo, N. & Hora, P. Numerical modelling, validation and analysis of multi-pass sheet metal spinning processes. Int J Mater Form 10, 641–651 (2017). https://doi.org/10.1007/s12289-016-1308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1308-5

Keywords

Navigation