Skip to main content
Log in

Numerical implementation of an elastic-viscoplastic constitutive model to simulate the mechanical behaviour of amorphous polymers

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Due to their high deformation capabilities, polymeric materials are widely used in several industries. However, polymers exhibit a complex behaviour with strain rate, temperature and pressure dependencies. Numerous constitutive models were developed in order to take into account their specific behaviour. Among these models, the ones proposed by Richeton et al Polymer 46:6035–6043 (2005a), Polymer 46:8194–8201 (2005b) seem to be particularly suitable. They proposed expressions for the Young modulus and the yield stress with strain rate and temperature dependence. Moreover, these models were also implemented in a finite elastic-viscoplastic deformation approach using a flow rule based on thermally activated process. The increase of computational capabilities allowed simulating polymer forming processes using finite element (FE) codes. The aim of the study is to implement the proposed constitutive model in a commercial FE code via a user material subroutine. The implementation of the model was verified using compressive tests over a wide range of strain rates. Next, FE simulations of an impact test and of a plane strain forging process were carried out. The FE predictions are in good agreement with the experimental results taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wu H, Ma G, Xia Y (2004) Experimental study of tensile properties of PMMA at intermediate strain rate. Mater Lett 58:3681–3685. doi:10.1016/j.matlet.2004.07.022

    Article  Google Scholar 

  2. Richeton J, Ahzi S, Vecchio KS, et al. (2006) Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int J Solids Struct 43:2318–2335. doi:10.1016/j.ijsolstr.2005.06.040

    Article  Google Scholar 

  3. Forquin P, Nasraoui M, Rusinek A, Siad L (2012) Experimental study of the confined behaviour of PMMA under quasi-static and dynamic loadings. Int. J. Impact Eng. 40–41:46–57. doi:10.1016/j.ijimpeng.2011.09.007

    Article  Google Scholar 

  4. Makradi A, Belouettar S, Ahzi S, Puissant S (2007) Thermoforming process of amorphous polymeric sheets: modeling and finite element simulations. J Appl Polym Sci 106:1718–1724. doi:10.1002/app.26869

    Article  Google Scholar 

  5. O’Connor CPJ, Martin PJ, Sweeney J, et al. (2013) Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model. J Mater Process Technol 213:1588–1600. doi:10.1016/j.jmatprotec.2013.02.001

    Article  Google Scholar 

  6. Jeridi M, Chouchene H, Keryvin V, Saï K (2014) Multi-mechanism modeling of amorphous polymers. Mech Res Commun 56:136–142. doi:10.1016/j.mechrescom.2014.01.003

    Article  Google Scholar 

  7. Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356. doi:10.1016/j.ijsolstr.2005.04.016

    Article  MATH  Google Scholar 

  8. Fleischhauer R, Dal H, Kaliske M, Schneider K (2012) A constitutive model for finite deformation of amorphous polymers. Int J Mech Sci 65:48–63. doi:10.1016/j.ijmecsci.2012.09.003

    Article  Google Scholar 

  9. Dar U, Zhang W, Xu Y (2014) Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA. Int J Mech Mater Des 10:93–107. doi:10.1007/s10999-013-9233-y

    Article  Google Scholar 

  10. Bouvard JL, Ward DK, Hossain D, et al. (2010) A general inelastic internal state variable model for amorphous glassy polymers. Acta Mech 213:71–96. doi:10.1007/s00707-010-0349-y

    Article  MATH  Google Scholar 

  11. Boyce MC, Parks DM, Argon AS (1988) Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech Mater 7:15–33. doi:10.1016/0167-6636(88)90003-8

    Article  Google Scholar 

  12. Anand L, Gurtin ME (2003) A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int J Solids Struct 40:1465–1487. doi:10.1016/S0020-7683(02)00651-0

    Article  MATH  Google Scholar 

  13. Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation Int J Plasticity 25:1474–1494. doi:10.1016/j.ijplas.2008.11.004

    MATH  Google Scholar 

  14. Ames NM, Srivastava V, Chester SA, Anand L (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications Int J Plasticity 25:1495–1539. doi:10.1016/j.ijplas.2008.11.005

    MATH  Google Scholar 

  15. Miehe C, Göktepe S, Méndez Diez J (2009) Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. Int J Solids Struct 46:181–202. doi:10.1016/j.ijsolstr.2008.08.029

    Article  MATH  Google Scholar 

  16. Danielsson M (2013) A stress update algorithm for constitutive models of glassy polymers. Int. J. Comput. Methods Eng. Sci. Mech. 14:336–342. doi:10.1080/15502287.2012.756955

    Article  MathSciNet  Google Scholar 

  17. Richeton J, Ahzi S, Daridon L, Rémond Y (2005) A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 46:6035–6043. doi:10.1016/j.polymer.2005.05.079

    Article  Google Scholar 

  18. Richeton J, Schlatter G, Vecchio KS, et al. (2005) A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 46:8194–8201. doi:10.1016/j.polymer.2005.06.103

    Article  Google Scholar 

  19. Richeton J, Ahzi S, Vecchio KS, et al. (2007) Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int J Solids Struct 44:7938–7954. doi:10.1016/j.ijsolstr.2007.05.018

    Article  MATH  Google Scholar 

  20. Fotheringham D, Cherry BW (1976) Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. J Mater Sci 11:1368–1371. doi:10.1007/BF00545162

    Article  Google Scholar 

  21. Simulia (2007) ABAQUS/explicit users manual. Providence, RI, USA

  22. Mahieux C, Reifsnider K (2001) Property modeling across transition temperatures in polymers: a robust stiffness–temperature model. Polymer 42:3281–3291. doi:10.1016/S0032-3861(00)00614-5

    Article  Google Scholar 

  23. Mahieux CA, Reifsnider KL (2002) Property modeling across transition temperatures in polymers: application to thermoplastic systems. J Mater Sci 37:911–920. doi:10.1023/A:1014383427444

    Article  Google Scholar 

  24. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707. doi:10.1021/ja01619a008

    Article  Google Scholar 

  25. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837. doi:10.1038/nmat3134

    Article  Google Scholar 

  26. Mott PH, Dorgan JR, Roland CM (2008) The bulk modulus and Poisson’s ratio of “incompressible” materials. J Sound Vib 312:572–575. doi:10.1016/j.jsv.2008.01.026

    Article  Google Scholar 

  27. Pandini S, Pegoretti A (2008) Time, temperature, and strain effects on viscoelastic Poisson’s ratio of epoxy resins. Polym Eng Sci 48:1434–1441. doi:10.1002/pen.21060

    Article  Google Scholar 

  28. Pandini S, Pegoretti A (2011) Time and temperature effects on Poisson’s ratio of poly(butylene terephthalate). Express Polym Lett 5:685–697. doi:10.3144/expresspolymlett.2011.67

    Article  Google Scholar 

  29. Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech Mater 19:193–212. doi:10.1016/0167-6636(94)00034-E

    Article  Google Scholar 

  30. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41:389–412. doi:10.1016/0022-5096(93)90013-6

    Article  MATH  Google Scholar 

  31. Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30:270–273. doi:10.1007/BF00366640

    Article  Google Scholar 

  32. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier

  33. Bicerano J (2002) Prediction of polymer properties. CRC Press, USA

    Book  Google Scholar 

  34. Boyce MC (1986) Large inelastic deformation of glassy polymers. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  35. Srivastava V, Chester SA, Ames NM, Anand L (2010) A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int J Plast 26:1138–1182. doi:10.1016/j.ijplas.2010.01.004

    Article  MATH  Google Scholar 

  36. Garg M, Mulliken AD, Boyce MC (2008) Temperature rise in polymeric materials during high rate deformation. J Appl Mech 75:1–8

    Article  Google Scholar 

  37. Furmanski J, Cady CM, Brown EN (2013) Time–temperature equivalence and adiabatic heating at large strains in high density polyethylene and ultrahigh molecular weight polyethylene. Polymer 54:381–390. doi:10.1016/j.polymer.2012.11.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Ahzi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, C.A., Correia, J.P.M., Ahzi, S. et al. Numerical implementation of an elastic-viscoplastic constitutive model to simulate the mechanical behaviour of amorphous polymers. Int J Mater Form 10, 607–621 (2017). https://doi.org/10.1007/s12289-016-1305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1305-8

Keywords

Navigation