Skip to main content
Log in

Simulation-based investigations on the drape behavior of 3D woven fabrics made of commingled yarns

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Composites based on 3D woven fabrics offer excellent mechanical properties due to the nearly non-crimp reinforcement fibers. Additionally, a reduced number of process steps results from the 3D nature of the reinforcement. Their in-plane and out-of-plane behaviors are purposefully adjustable to the expected loading conditions. A previously introduced modelling approach is extended to the simulation of 3D woven fabrics. The tensile, shear and bending behaviors of the fabric are considered in a material formulation for large deformations using shell elements. The model is successfully validated and parameter studies show the significant influence of shear and bending parameters on forming results. Furthermore, it is shown that also the forming process parameters have a significant influence on the draping results. It is concluded that the shearing and wrinkling can be reduced to a minimum with adapted material and process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mouritz AP, Bannister MK, Falzon PJ, Loeng KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos A: Appl Sci Manuf 30:1445–1461. doi:10.1016/s1359-835X(99)00034-2

    Article  Google Scholar 

  2. Bilisik K (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82:725–743. doi:10.1177/0040517511435013

    Article  Google Scholar 

  3. Tan P, Tong L, Steven GP, Ishikawa T (2000) Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Compos A: Appl Sci Manuf 31:259–271. doi:10.1016/S1359-835X(99)00070-6

    Article  Google Scholar 

  4. Tan P, Tong L, Steven GP, Ishikawa T (2000) Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical models. Compos A: Appl Sci Manuf 31:273–281. doi:10.1016/S1359-835X(99)00071-8

    Article  Google Scholar 

  5. Dufour C, Wang P, Boussu F, Soulat D (2014) Experimental investigation about stamping behaviour of 3D warp interlock composite preforms. Appl Compos Mater 21:725–738. doi:10.1007/s10443-013-9369-9

    Article  Google Scholar 

  6. Gereke T, Döbrich O, Hübner M, Cherif C (2013) Experimental and computational composite textile reinforcement forming: a review. Compos A: Appl Sci Manuf 46:1–10. doi:10.1016/j.compositesa.2012.10.004

    Article  Google Scholar 

  7. Charmetant A, Orliac JG, Vidal-Sallé E, Boisse P (2012) Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos Sci Technol 72:1352–1360. doi:10.1016/j.compscitech.2012.05.006

    Article  Google Scholar 

  8. De Luycker E, Morestin F, Boisse P, Marsal D (2009) Simulation of 3D interlock composite preforming. Compos Struct 88:615–623. doi:10.1016/j.compstruct.2008.06.005

    Article  Google Scholar 

  9. Green DS, Long AC, El Said BSF, Hallett SR (2014) Numerical modelling of 3D woven preform deformations. Compos Struct 108:747–756. doi:10.1016/j.compstruct.2013.10.015

    Article  Google Scholar 

  10. Lomov SV, Perie G, Ivanov DS, Verpoest I, Marsal D (2011) Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Text Res J 81:28–41. doi:10.1177/0040517510385169

    Article  Google Scholar 

  11. Fazeli M, Kleicke R, Cherif C, Van Paepegem W (2012) High-performance lightweight multifunctional composites based on 3D-shaped multilayered woven fabrics. In: Proceedings 4th World Conference on 3D Fabrics and their Applications, Aachen, 2012

  12. DIN EN ISO 13934-1. Textiles – Tensile properties of fabrics – part 1: determination of the maximum force and elongation at maximum force using the strip method

  13. Orawattanasrikul S (2006) Experimental analysis of shear deformation of biaxial reinforced multi-layer fabrics. Dissertation, Technische Universität Dresden

  14. Machova K, Klug P, Waldmann M, Hoffmann G, Cherif C (2006) Effektive Bestimmung der Biegesteifigkeit von Abstandsgewirken. Melliand Textilberichte 87:437–438

    Google Scholar 

  15. DIN 53362. Testing of plastic films and textile fabrics (excluding nonwovens), coated or not coated with plastics – Determination of stiffness in bending – Method accordnig to Cantilever

  16. Allaoui S, Hivet G, Soulat D, Wendling A, Ouagne P, Chatel S (2014) Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form 7:155–165. doi:10.1007/s12289-012-1116-5

    Article  Google Scholar 

  17. Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, Vidal-Salle E (2011) Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos A: Appl Sci Manuf 42:612–622. doi:10.1016/j.compositesa.2011.02.001

    Article  Google Scholar 

  18. Rocher JR, Allaoui S, Hivet G, Blond E (2012) Experimental characterization of the tensile behavior of a polypropylene/glass 3D-fabric: from the yarn to the fabric. In: Proceedings 4th World Conference on 3D Fabrics and their Applications, Aachen, 2012

  19. Döbrich O, Gereke T, Diestel O, Krzywinski S, Cherif C (2013) Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation. J Ind Text 44:70–84. doi:10.1177/1528083713477442

    Article  Google Scholar 

  20. Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71:683–692. doi:10.1016/j.compscitech.2011.01.011

    Article  Google Scholar 

  21. Hamdi T, Ghith A, Fayala F (2014) A principal component analysis (PCA) method for predicting the correlation between some fabric parameters and the drape. Autex Res J 14:22–27. doi:10.2478/v10304-012-0046-0

    Article  Google Scholar 

  22. Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 79:1443–1466. doi:10.1002/nme.2625

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) relating to project “Large scale manufacturing technology for high-performance lightweight 3D multifunctional composites (3D-LightTrans)” - under grant agreement n° 263223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hübner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hübner, M., Rocher, JE., Allaoui, S. et al. Simulation-based investigations on the drape behavior of 3D woven fabrics made of commingled yarns. Int J Mater Form 9, 591–599 (2016). https://doi.org/10.1007/s12289-015-1245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1245-8

Keywords

Navigation