Skip to main content
Log in

Numerical simulation on the flow and heat transfer of polymer powder in rotational molding

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

A numerical study is developed to predict of flow behavior and heat transfer processes during rotational molding of polymer powder by using Discrete Element Method (DEM). The aim of this study is to model different forms, the evolution of mixing and segregation and the evolution of heat transfers in polymer powder. Influence of physical and thermal properties on the granular flow and heat transfer are investigated though the numerical example of polymer powder HDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Throne JL (1997) Powder characteristics in rotational molding, SPE ANTEC Tech, pp 43

  2. Throne JL (2002) Powder flow during rotational molding. In proceedings of SPE ANTEC

  3. Mellmann J (2001) The transverse motion of solids in rotating cylinders-forms of motion and transition behaviour. Powder Technol 118:251–270

    Article  Google Scholar 

  4. Henein H, Brimacombe JK, Watkinson AP (1983) The modelling of transverse solids motion in rotary kilns. Metall Trans B 14:207–220

    Article  Google Scholar 

  5. Henein H, Brimacombe JK, Watkinson AP (1983) Experimental study of transverse bed motion in rotary kilns. Metall Trans B 14:191–205

    Article  Google Scholar 

  6. Olinek J, Anand C, Bellehumeur CT (2005) Experimental study on the flow and deposition of powder particles in rotational molding. Pol Eng Sci 45:62–73

    Article  Google Scholar 

  7. Bhrami M, Yovanovich MM, Culham JR (2006) Effective thermal conductivity of rough spherical packed beds. Int J Heat Mass Transf 49:3691–3701

    Article  Google Scholar 

  8. Filali M (2006) Conductivité thermique appanente des milieux granulaire soumis a des contraintes mécanique: Modélisation et mesure, PhD thesis, Institut National Polytechnique de Toulouse

  9. O’Brien RWO (1977) Thermal or electrical conduction though granular material. Proc R Soc Lond 355:313

    Article  MathSciNet  Google Scholar 

  10. Laguerre O, Ben Amara S, Flick D (2008) Transient heat and masse transfer by free convection in a packed bed og spheres: comparison between two modelling. Appl Therm Eng 28:14–24

    Article  Google Scholar 

  11. Nguyen VD, Cogné C, Fortin J, Guessasma M, Bellenger E, Coorevits P (2007) Modélisation du transfert thermique dans un modèle Eléments Discrets, 18ème Congrès Français de Mécanique, Grenoble, France

  12. Chaudhuri B, Muzzio FJ, Silvina Tomassone M (2006) Modeling of heat transfer in granular flow in rotating vessels. Chem Eng Sci 61:6348–6360

    Article  Google Scholar 

  13. Vargas WL, McCarthy JJ (2002) Stress effects on the conductivity of particle beds. Chem Eng Sci 57:3119–3131

    Article  Google Scholar 

  14. Cundall PA, Strack ODL (1979) A discret numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  15. Walton OR, Braun RL (1993) Joint DOE, NSF workshop on flow of particulates and fluids, Ithaca, NY

  16. Zhang R, Mustoe GCW, Nelson KR (1993) 2nd international conference on discrete element method (DEM), MIT, Cambridge, MA, pp 189

  17. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for open source DEM and CFD-DEM. Prog Comput Fluid Dyn 12(2/3):140–152

  18. Kloss C, Goniva C (2010) LIGGGHTS—a new open source discrete element simulation software, Proc. of the fifth International Conference on Discrete Element Methods, London, UK, ISBN 978-0-9551179-8-5, pp 25–26

  19. Kloss C, Goniva C (2010) Granular simulations in LAMMPS new key features and perspectives, LAMMPS user workshop, 1

  20. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw Hill, Tokyo

    Google Scholar 

  21. Rong G, Negi SC, Jofriet JC (1993) DEM simulation of intransit fruit damage. ASAE Pap 93:6503

    Google Scholar 

  22. Taylor LM, Preece DS (1992) Simulation of blasting induced rock motion using spherical element method. Eng Comput 9(2):243–252

    Article  Google Scholar 

  23. Raji AO, Favier JF (2004) Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: theory, model development and validation. J Food Eng 64:359–371

    Article  Google Scholar 

  24. Chand R, Khaskheli M, Qadir A, Ge B, Shi Q (2012) Discrete particle simulation of radial segregation in horizontally rotating drum: effects of drum-length and non-rotating end-plates. Phys Eng Sci 391:4590–4596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Cosson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Cosson, B., Lacrampe, M.F. et al. Numerical simulation on the flow and heat transfer of polymer powder in rotational molding. Int J Mater Form 8, 423–438 (2015). https://doi.org/10.1007/s12289-014-1185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1185-8

Keywords

Navigation