Skip to main content
Log in

Multilayered regulations of RIG-I in the anti-viral signaling pathway

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

RIG-I is a cytosolic receptor recognizing virus-specific RNA structures and initiates an antiviral signaling that induces the production of interferons and proinflammatory cytokines. Because inappropriate RIG-I signaling affects either viral clearance or immune toxicity, multiple regulations of RIG-I have been investigated since its discovery as the viral RNA detector. In this review, we describe the recent progress in research on the regulation of RIG-I activity or abundance. Specifically, we focus on the mechanism that modulates RIG-I-dependent antiviral response through post-translational modifications of or protein-protein interactions with RIG-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostolou, E. and Thanos, D. 2008. Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104, 7500–7505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, S.J., Lee, H.C., Kim, J.H., Park, S.Y., Kim, T.H., Lee, W.K., Jang, D.J., Yoon, J.E., Choi, Y.I., Kim, S., et al. 2016. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J. 35, 429–442.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840.

    Article  CAS  PubMed  Google Scholar 

  • Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., Wang, H.Y., and Wang, R.F. 2014. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res. 24, 400–416.

    Article  CAS  PubMed  Google Scholar 

  • Das, A., Dinh, P.X., Panda, D., and Pattnaik, A.K. 2014. Interferoninducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. J. Virol. 88, 3103–3113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, Y., Mao, R., Yu, Y., Liu, S., Shi, Z., Cheng, J., Zhang, H., An, L., Zhao, Y., Xu, X., et al. 2014. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J. Exp. Med. 211, 313–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman, C.S., O’Donnell, M.A., Legarda-Addison, D., Ng, A., Cardenas, W.B., Yount, J.S., Moran, T.M., Basler, C.F., Komuro, A., Horvath, C.M., et al. 2008. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920.

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa, S., Shiratori, S., Yamato, H., Kameyama, T., Kitatsuji, C., Kashigi, F., Goto, S., Kameoka, S., Fujikura, D., Yamada, T., et al. 2011. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 12, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Zhao, J., Song, S., He, X., Minassian, A., Zhou, Y., Zhang, J., Brulois, K., Wang, Y., Cabo, J., et al. 2015. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production. Mol. Cell 58, 134–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Sealfon, S.C., Hayot, F., Jayaprakash, C., Kumar, M., Pendleton, A.C., Ganee, A., Fernandez-Sesma, A., Moran, T.M., and Wetmur, J.G. 2007. Chromosome-specific and noisy IFNB1 transcription in individual virus-infected human primary dendritic cells. Nucleic Acids Res. 35, 5232–5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, S.Y., Hur, K.Y., Kim, J.R., Cho, K.H., Kim, S.H., and Yoo, J.Y. 2013. Biphasic RLR-IFN-β response controls the balance between antiviral immunity and cell damage. J. Immunol. 190, 1192–1200.

    Article  CAS  PubMed  Google Scholar 

  • Inn, K.S., Gack, M.U., Tokunaga, F., Shi, M.D., Wong, L.Y., Iwai, K., and Jung, J.U. 2011. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 41, 354–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., and Chen, Z.J. 2012. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, F., Ramanathan, A., Miller, M.T., Tang, G.Q., Gale, M.Jr., Patel, S.S., and Marcotrigiano, J. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.J., Hwang, S.Y., Imaizumi, T., and Yoo, J.Y. 2008. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82, 1474–1483.

    Article  CAS  PubMed  Google Scholar 

  • Kok, K.H., Lui, P.Y., Ng, M.H.J., Siu, K.L., Au, S.W.N., and Jin, D.Y. 2011. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 9, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., and Cusack, S. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Kuniyoshi, K., Takeuchi, O., Pandey, S., Satoh, T., Iwasaki, H., Akira, S., and Kawai, T. 2014. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. USA 111, 5646–5651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M.T., Di, W., Xu, H., Yang, Y.K., Chen, H.W., Zhang, F.X., Zhai, Z.H., and Chen, D.Y. 2013. Negative regulation of RIG-I-mediated innate antiviral signaling by SEC14L1. J. Virol. 87, 10037–10046.

    Article  CAS  PubMed Central  Google Scholar 

  • Liu, H.M., Loo, Y.M., Horner, S.M., Zornetzer, G.A., Katze, M.G., and Gale, M. 2012. The mitochondrial targeting chaperone 14-3-3 epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Luo, D.Y., and Yang, N. 2015. Cytosolic low molecular weight FGF2 orchestrates RIG-I-mediated innate immune response. J. Immunol. 195, 4943–4952.

    Article  CAS  PubMed  Google Scholar 

  • Loo, Y.M. and Gale, M.Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharaj, N.P., Wies, E., Stoll, A., and Gack, M.U. 2012. Conventional protein kinase C-α (PKC-α) and PKC-β negatively regulate RIG-I antiviral signal transduction. J. Virol. 86, 1358–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172.

    Article  CAS  PubMed  Google Scholar 

  • Mi, Z., Fu, J., Xiong, Y., and Tang, H. 2010. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 1, 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita, M., Oshiumi, H., Matsumoto, M., and Seya, T. 2011. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol. Cell. Biol. 31, 3802–3819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, N.T.H., Now, H., Kim, W.J., Kim, N., and Yoo, J.Y. 2016. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci. Rep. DOI 10.1038/srep23377.

    Google Scholar 

  • Nistal-Villan, E., Gack, M.U., Martinez-Delgado, G., Maharaj, N.P., Inn, K.S., Yang, H., Wang, R., Aggarwal, A.K., Jung, J.U., and Garcia-Sastre, A. 2010. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-β production. J. Biol. Chem. 285, 20252–20261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Now, H. and Yoo, J.Y. 2011. A protein-kinase, IFN-inducible doublestranded RNA dependent inhibitor and repressor of p58 (PRKRIR) enhances type I IFN-mediated antiviral response through the stability control of RIG-I protein. Biochem. Biophys. Res. Commun. 413, 487–493.

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi, H., Matsumoto, M., Hatakeyama, S., and Seya, T. 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection. J. Biol. Chem. 284, 807–817.

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., and Seya, T. 2010. The ubiquitin ligase Riplet is essential for RIGI-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8, 496–509.

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi, H., Miyashita, M., Matsumoto, M., and Seya, T. 2013. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9, e1003533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, J.R., Jain, A., Chou, Y.Y., Baum, A., Ha, T., and Garcia-Sastre, A. 2013. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep. 14, 780–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Z., Ren, H., Liu, Y., Teeling, J.L., and Gu, J. 2011. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J. Virol. 85, 1036–1047.

    Article  CAS  PubMed  Google Scholar 

  • Wallach, D. and Kovalenko, A. 2013. Phosphorylation and dephosphorylation of the RIG-I-like receptors: a safety latch on a fateful pathway. Immunity 38, 402–403.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P.H., Arjona, A., Zhang, Y., Sultana, H., Dai, J.F., Yang, L., Le-Blanc, P.M., Doiron, K., Saleh, M., and Fikrig, E. 2010. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat. Immunol. 11, 912–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.T., Tong, X.M., Li, G., Li, J.H., Deng, M., and Ye, X. 2012. Ankrd17 positively regulates RIG-I-like receptor (RLR)-mediated immune signaling. Eur. J. Immunol. 42, 1304–1315.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Zhao, W., Zhang, M., Wang, P., Zhao, K., Zhao, X., Yang, S., and Gao, C. 2013. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J. Virol. 87, 4507–4515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wies, E., Wang, M.K., Maharaj, N.P., Chen, K., Zhou, S., Finberg, R.W., and Gack, M.U. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38, 437–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Li, Q., Mao, A.P., Hu, M.M., and Shu, H.B. 2014. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J. Mol. Cell Biol. 6, 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y.K., Qu, H., Gao, D., Di, W., Chen, H.W., Guo, X., Zhai, Z.H., and Chen, D.Y. 2011. ARF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J. Biol. Chem. 286, 10568–10580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Zawatzky, R., De Maeyer, E., and De Maeyer-Guignard, J. 1985. Identification of individual interferon-producing cells by in situ hybridization. Proc. Natl. Acad. Sci. USA 82, 1136–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Yu, H., Zhao, J., Li, X., Li, J., He, J., Xia, Z., and Zhao, J. 2016. IKK negatively regulates RIG-I via direct phosphorylation. J. Med. Virol. 88, 712–718.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., Zhang, Q., Li, X., Zhao, D., Liu, Y., Shen, Q., Yang, M., Wang, C., Li, N., and Cao, X. 2016. Cytoplasmic STAT4 promotes antiviral type I IFN production by blocking CHIP-mediated degradation of RIG-I. J. Immunol. 196, 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, M., Zhang, J., Phatnani, H., Scheu, S., and Maniatis, T. 2012. Stochastic expression of the interferon-β gene. PLoS Biol. 10, e1001249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J.Z., Zhang, Y.G., Ghosh, A., Cuevas, R.A., Forero, A., Dhar, J., Ibsen, M.S., Schmid-Burgk, J.L., Schmidt, T., Ganapathiraju, M.K., et al. 2014. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40, 936–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nari Kim or Joo-Yeon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N., Now, H., Nguyen, N.T.H. et al. Multilayered regulations of RIG-I in the anti-viral signaling pathway. J Microbiol. 54, 583–587 (2016). https://doi.org/10.1007/s12275-016-6322-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6322-2

Keywords

Navigation