Skip to main content
Log in

Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen’s persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asselineau, C., Asselineau, J., Laneelle, G., and Laneelle, M.A. 2002. The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. Prog. Lipid Res.41, 501–523.

    Article  PubMed  CAS  Google Scholar 

  • Asselineau, J. and Lederer, E. 1950. Structure of the mycolic acids of Mycobacteria. Nature166, 782–783.

    Article  PubMed  CAS  Google Scholar 

  • Barry, C.E., 3rd, Lee, R.E., Mdluli, K., Sampson, A.E., Schroeder, B.G., Slayden, R.A., and Yuan, Y. 1998. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res.37, 143–179.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P.J. 1989. Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. Rev. Infect. Dis.11Suppl 2, S420–430.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P.J. and Nikaido, H. 1995. The envelope of mycobacteria. Annu. Rev. Biochem.64, 29–63.

    Article  PubMed  CAS  Google Scholar 

  • Casali, N. and Riley, L.W. 2007. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics8, 60.

    Article  PubMed  Google Scholar 

  • Casali, N., White, A.M., and Riley, L.W. 2006. Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol.188, 441–449.

    Article  PubMed  CAS  Google Scholar 

  • Chitale, S., Ehrt, S., Kawamura, I., Fujimura, T., Shimono, N., Anand, N., Lu, S., Cohen-Gould, L., and Riley, L.W. 2001. Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol.3, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, andet al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Converse, S.E., Mougous, J.D., Leavell, M.D., Leary, J.A., Bertozzi, C.R., and Cox, J.S. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA100, 6121–6126.

    Article  PubMed  CAS  Google Scholar 

  • De Koning, L.J., Nibbering, N.M.M., van Orden, S.L., and Laukien, F.H. 1997. Mass selection of ions in a Fourier ion cyclotron resonance trap using correlated harmonic excitation fields (CHEF). Int. J. Mass Spec. Ion. Proc.165/166, 209–219.

    Article  Google Scholar 

  • Dobson, G.M.D., Minnikin, S.M., Parlett, J.H., Goodfellow, M., Ridell, M., and Magnusson, M. 1985. Analysis of complex mycobacterial lipids, pp. 237–265. In Minnikin, D.E. (ed.), Chemical Methods in Bacterial Systematics, Academic Press, London, UK.

    Google Scholar 

  • Dubnau, E., Chan, J., Raynaud, C., Mohan, V.P., Laneelle, M.A., Yu, K., Quemard, A., Smith, I., and Daffe, M. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol.36, 630–637.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, K.Y., Senaratne, R.H., Masuzawa, M., Kendall, L.V., and Riley, L.W. 2010. Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5. J. Infect. Dis.201, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, J.W., Trautman, T.R., and Jacobson, D.B. 1991. Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta.246, 211–225.

    Article  CAS  Google Scholar 

  • Glickman, M.S., Cox, J.S., and Jacobs, W.R. Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell.5, 717–727.

    Article  PubMed  CAS  Google Scholar 

  • Goren, M.B. 1972. Mycobacterial lipids: selected topics. Bacteriol. Rev.36, 33–64.

    PubMed  CAS  Google Scholar 

  • Harboe, M., Christensen, A., Ahmad, S., Ulvund, G., Harkness, R.E., Mustafa, A.S., and Wiker, H.G. 2002. Cross-reaction between mammalian cell entry (Mce) proteins of Mycobacterium tuberculosis. Scand. J. Immunol.56, 580–587.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D. 1995. Quantitative Chemical Analysis, 4th ed. W.H. Freeman and Co., New York, N.Y., USA.

    Google Scholar 

  • Jackson, M., Raynaud, C., Laneelle, M.A., Guilhot, C., Laurent-Winter, C., Ensergueix, D., Gicquel, B., and Daffe, M. 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol. Microbiol.31, 1573–1587.

    Article  PubMed  CAS  Google Scholar 

  • Karakousis, P.C., Bishai, W.R., and Dorman, S.E. 2004. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell. Microbiol.6, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Barry, C.E., 3rd, Besra, G.S., and Nikaido, H. 1996. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem.271, 29545–29551.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, M., Daffe, M., and Brennan, P.J. 1991. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J. Biol. Chem.266, 13217–13223.

    PubMed  CAS  Google Scholar 

  • Minnikin, D.E. 1982. Lipids: Complex lipids, their chemistry, biosynthesis and role, pp. 95–184. In R. C. a. S. J. (ed.), The Biology of Mycobacteria, vol. 1. Academic Press, London, UK.

    Google Scholar 

  • Noll, H., Bloch, H., Asselineau, J., and Lederer, E. 1956. The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim. Biophys. Acta.20, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs, W.R.Jr., and Hatfull, G.F. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol.69, 164–174.

    Article  PubMed  CAS  Google Scholar 

  • Ojha, A.K., Trivelli, X., Guerardel, Y., Kremer, L., and Hatfull, G.F. 2010. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem.285, 17380–17389.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, A.K. and Sassetti, C.M. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA105, 4376–4380.

    Article  PubMed  CAS  Google Scholar 

  • Parish, T. and Stoker, N.G. 1998. Mycobacteria Protocols. Chapter 8, pp. 98–99, vol. 101. Humana Press, Totowa, New Jersey, USA.

    Book  Google Scholar 

  • Parish, T. and Stoker, N.G. 2000. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology146, 1969–1975.

    PubMed  CAS  Google Scholar 

  • Payne, K., Sun, Q., Sacchettini, J., and Hatfull, G.F. 2009. Mycobacteriophage lysin B is a novel mycolylarabinogalactan esterase. Mol. Microbiol.73, 367–381.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V., Fujiwara, N., Porcelli, S.A., and Glickman, M.S. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med.201, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V., Gao, F., Chen, B., Jacobs, W.R.Jr., and Glickman, M.S. 2006. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J. Clin. Invest.116, 1660–1667.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, N., Morici, L., Casali, N., Cantrell, S., Sidders, B., Ehrt, S., and Riley, L.W. 2003. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA100, 15918–15923.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., Crossman, D.K., Mai, D., Guidry, L., Voskuil, M.I., Renfrow, M.B., and Steyn, A.J. 2009. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog.5, e1000545.

    Article  PubMed  Google Scholar 

  • Song, H., Sandie, R., Wang, Y., Andrade-Navarro, M.A., and Niederweis, M. 2008. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb).88, 526–544.

    Article  PubMed  CAS  Google Scholar 

  • Takayama, K., Wang, C., and Besra, G.S. 2005. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev.18, 81–101.

    Article  PubMed  CAS  Google Scholar 

  • Tekaia, F., Gordon, S.V., Garnier, T., Brosch, R., Barrell, B.G., and Cole, S.T. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis.79, 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Trivedi, O.A., Arora, P., Sridharan, V., Tickoo, R., Mohanty, D., and Gokhale, R.S. 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature428, 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, Y., Casali, N., White, A., Morici, L., Kendall, L.V., and Riley, L.W. 2007. Accelerated immunopathological response of mice infected with Mycobacterium tuberculosis disrupted in the mce1 operon negative transcriptional regulator. Cell. Microbiol.9, 1275–1283.

    Article  PubMed  CAS  Google Scholar 

  • WHO. 2009. Global tuberculosis control: a short update to the 2009 report. Geneva.

    Google Scholar 

  • Yang, Y., Bhatti, A., Ke, D., Gonzalez-Juarrero, M., Lenaerts, A., Kremer, L., Guerardel, Y., Zhang, P., and Ojha, A.K. 2013. Exposure to a cutinase-like serine esterase triggers rapid lysis of multiple mycobacterial species. J. Biol. Chem.288, 382–392.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, Y., Zhu, Y., Crane, D.D., and Barry, C.E.3rd. 1998. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol. Microbiol.29, 1449–1458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Marjanovic.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantrell, S.A., Leavell, M.D., Marjanovic, O. et al. Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis . J Microbiol. 51, 619–626 (2013). https://doi.org/10.1007/s12275-013-3092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3092-y

Keywords

Navigation