Skip to main content
Log in

Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Sulfite is a commonly used preservative in foods, beverages, and Pharmaceuticals because it is toxic to many microorganisms. In order to understand the global response of Saccharomyces cerevisiae to sulfite, genome-wide transcript profiling following sulfite exposure was obtained. The transcription levels of 21 genes were increased more than 2-fold, while those of 37 genes decreased to a similar extent. Genes involved in carbohydrate metabolism represented the highest proportion of induced genes, which may account for the easily acquired resistance to sulfite. Most of down-regulated genes are involved in transcription, protein biosynthesis, and cell growth. The down-regulation of these genes is thought to reflect growth arrest which occurs during sulfite treatment, allowing cells to save energy. Cells treated with sulfite generated more than 70% of acetaldehyde than untreated cells, suggesting that the increased acetaldehyde production is correlated with the induction of PDC1 gene encoding pyruvate decarboxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498, 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Aranda, A. and M.L. Del Olmo. 2004. Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl. Environ. Microbiol. 70, 1913–1922.

    Article  PubMed  CAS  Google Scholar 

  • Avram, D. and A.T. Bakalinsky. 1997. SSU1 encodes a putative transporter with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J. Bacteriol. 179, 5971–5974.

    PubMed  CAS  Google Scholar 

  • Boulton, R.B. and V.L. Singleton. 1995. The role of sulfur dioxide in wine, p. 448–437. In L.F. Bisson and R.E. Kunkee (eds.), Principles and practices of wine making. Chapman and Hall, New York, N.Y., USA.

    Google Scholar 

  • Caba, E., D.A. Dickinson, G.R. Warnes, and J. Aubrecht. 2005. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutat. Res. 575, 34–46.

    PubMed  CAS  Google Scholar 

  • Casalone, E., C.M. Colella, S. Daly, E. Gallori, L. Moriani, and M. Polsinelli. 1992. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr. Genet. 22, 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Casalone, E., C.M. Colella, E Ricci, and M. Polsinelli. 1989. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulphite. Yeast 5, S287–291.

    PubMed  CAS  Google Scholar 

  • Chang, I.S., B.H. Kim, and P.K. Shin. 1997. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl. Environ. Microbiol. 63, 1–6.

    PubMed  CAS  Google Scholar 

  • Compagno, C., L. Brambilla, D. Capitanio, E Boschi, B.M. Banzi, and D. Porro. 2001. Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant. Yeast 18, 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Gasch, A.P. and M. Werner-Washburne. 2002. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Gunnison, A.F. and D.W. Jacobson. 1987. Sulfite hypersensitivity: a critical review. CRC Crit. Rev. Toxi. 17, 185–214.

    Article  CAS  Google Scholar 

  • Hinze, H. and H. Holzer. 1986. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch. Microbiol. 145, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky, S.A. and L.D. Samson. 1999. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl. Acad. Set USA 96, 1486–1491.

    Article  CAS  Google Scholar 

  • Lee, M.W., B.J. Kim, H.K. Choi, M.J. Ryu, S.B. Kim, K.M. Kang, E.J. Cho, W. Youn, W.K. Huh, and S.T. Kim. 2007. Global protein expression profiling of budding yeast in response to DNA damage. Yeast 24, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Maier, K., H. Hinze, and L. Leuschel. 1986. Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 848, 120–130.

    Article  CAS  Google Scholar 

  • Meng, Z., G. Qin, B. Zhang, and J. Bai. 2004. DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19, 465–468.

    Article  PubMed  CAS  Google Scholar 

  • Ough, C.S. 1993. Sulfur dioxide and sulfites, p. 137–190. In P.M. Davidson and A.L. Branen (eds.), Antimicrobials in Foods. Marcel Dekker Inc., New York, N.Y., USA.

    Google Scholar 

  • Overkamp, K.M., B.M. Bakker, P. Kötter, M.A. Luttik, J.P. Van Dijken, and J.T. Pronk. 2002. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 2814–2821.

    Article  PubMed  CAS  Google Scholar 

  • Ozcan, S. and M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63, 554–569.

    PubMed  CAS  Google Scholar 

  • Park, H. and A.T. Bakalinsky. 2000. SSU1 mediates sulfite efflux in Saccharomyces cerevisiae. Yeast 16, 881–888.

    Article  PubMed  CAS  Google Scholar 

  • Park, H., N.I. Lopez, and A.T. Bakalinsky. 1999. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr. Genet. 36, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Pilkington, B.J. and A.H. Rose. 1988. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailli to sulphite. J. Gen. Bacteriol. 134, 2823–2830.

    CAS  Google Scholar 

  • Prakash, D., H. Hinze, and H. Holzer. 1986. Synergistic effect of m-chloro-peroxybenzoic acid, sulfite and nitrite on the energy metabolism of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 34, 305–308.

    CAS  Google Scholar 

  • Pronk, J.T., H.Y de Steensma, and J.P. Van Dijken. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607–1633.

    Article  PubMed  CAS  Google Scholar 

  • Reist, M., P. Jenner, and B. Halliwell. 1998. Sulphite enhances peroxynitrite-dependent alpha1-antiproteinase inactivation: A mechanism of lung injury by sulphur dioxide? FEBS Lett. 423, 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Reverter-Branchat, G., E. Cabiscol, J. Tamarit, M.A. Sorolla, M. Angeles De La Torre, and J. Ros. 2007. Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology 153, 3667–3676.

    Article  PubMed  CAS  Google Scholar 

  • Schaff-Gerstenschläger, I., G. Mannhaupt, I. Vetter, F.K. Zimmermann, and H. Feldmann. 1993. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. Eur. J. Biochem. 217, 487–492.

    Article  Google Scholar 

  • Schaufler, L.E. and R.E. Klevit. 2003. Mechanism of DNA binding by the ADR1 zinc finger transcription factor as determined by SPR. J. Mol. Biol. 329, 931–939.

    Article  PubMed  CAS  Google Scholar 

  • Schimz, K.S. and H. Holzer. 1979. Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch. Microbiol. 125, 89–95.

    Article  Google Scholar 

  • Schmitt, H.D, M. Ciriacy, and F.K. Zimmermann. 1983. The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol. Gen. Genet. 192, 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Shenton, D., J.B. Smirnova, J.N. Selley, K. Carroll, S.J. Hubbard, G.D. Pavitt, M.P. Ashe, and C.M. Grant. 2006. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021.

    Article  PubMed  CAS  Google Scholar 

  • Sirisattha, S., Y. Momose, E. Kitagawa, and H. Iwahashi. 2004. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res. 38, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S.L., N.A. Higley, and R.K. Bush. 1986. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv. Food Res. 30, 1–76.

    Article  PubMed  CAS  Google Scholar 

  • Ter Linde, J.J., H. Liang, R.W. Davis, W. Steensma, J.P. Van Dijken, and J.T. Pronk. 1999. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J. Bacteriol. 181, 7409–7413.

    PubMed  Google Scholar 

  • Thomas, D., R. Barbey, D. Henry, and Y. Surdin-Kerjan. 1992. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J. Gen. Microbiol. 138, 2021–2028.

    PubMed  CAS  Google Scholar 

  • Walther, K. and H. Schüller. 2001. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 147, 2037–2044.

    PubMed  CAS  Google Scholar 

  • Waters, B.M. and D.J. Eide. 2002. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J.Biol. Chem. 277, 33749–33757.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., X. Zheng, Y. Araki, H. Sahara, H. Takagi, and H. Shimoi. 2006. Global gene expression analysis of yeast cells during sake brewing. Appl. Environ. Microbiol. 72, 7353–7358.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., A.S. Vincent, B. Halliwell, and K.P. Wong. 2004. A mechanism of sulfite neurotoxicity: Direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Hwang, YS. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae . J Microbiol. 46, 542–548 (2008). https://doi.org/10.1007/s12275-008-0053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0053-y

Keywords

Navigation