Skip to main content
Log in

Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have recently provided a new perspective on optoelectronics because of their unique layered structure and excellent physical properties. However, their potential use as optoelectric devices has been limited by the trade-off between photoresponsivity and response time. Here, based on a vertically stacked atomically thin p-n junction, we propose a gap-mode plasmon structure that simultaneously enables enhanced responsivity and rapid photodetection. The atomically thin 2D materials act as a spacer for enhancing the gap-mode plasmons, and their short transit length in the vertical direction allows fast photocarrier transport. We demonstrate a high responsivity of up to 8.67 A/W with a high operation speed that exceeds 35 MHz under a 30 nW laser power. Spectral photocurrent, absorption, and a numerical simulation are used to verify the effectiveness of the gap-mode plasmons in the device. We believe that the design strategy proposed in this study can pave the way for a platform to overcome the trade-off between responsivity and response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.

    Article  Google Scholar 

  2. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  CAS  Google Scholar 

  3. Cheng, J. B.; Wang, C. L.; Zou, X. M.; Liao, L. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 2019, 7, 1800441.

    Article  Google Scholar 

  4. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    Article  CAS  Google Scholar 

  5. Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.

    Article  CAS  Google Scholar 

  6. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

    Article  CAS  Google Scholar 

  7. Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

    Article  CAS  Google Scholar 

  8. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 Heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Article  Google Scholar 

  9. Kang, P.; Wang, M. C.; Knapp, P. M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639–4645.

    Article  CAS  Google Scholar 

  10. Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458.

    Article  CAS  Google Scholar 

  11. Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154–161.

    Article  CAS  Google Scholar 

  12. Paria, D.; Roy, K.; Singh, H. J.; Kumar, S.; Raghavan, S.; Ghosh, A.; Ghosh, A. Ultrahigh field enhancement and photoresponse in atomically separated arrays of plasmonic dimers. Adv. Mater. 2015, 27, 1751–1758.

    Article  CAS  Google Scholar 

  13. Huang, Y.; Ma, L. W.; Hou, M. J.; Li, J. H.; Xie, Z.; Zhang, Z. J. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror. Sci. Rep. 2016, 6, 30011.

    Article  CAS  Google Scholar 

  14. Mubeen, S.; Zhang, S. P.; Kim, N.; Lee, S.; Krämer, S.; Xu, H. X.; Moskovits, M. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 2012, 12, 2088–2094.

    Article  CAS  Google Scholar 

  15. Hajisalem, G.; Nezami, M. S.; Gordon, R. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014, 14, 6651–6654.

    Article  CAS  Google Scholar 

  16. Wu, Z. Q.; Yang, J. L.; Manjunath, N. K.; Zhang, Y. J.; Feng, S. R.; Lu, Y. H.; Wu, J. H.; Zhao, W. W.; Qiu, C. Y.; Li, J. F. et al. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, 1706527.

    Article  Google Scholar 

  17. Sun, B.; Wang, Z. Y.; Liu, Z. Y.; Tan, X. H.; Liu, X. Y.; Shi, T. L.; Zhou, J. X.; Liao, G. L. Tailoring of silver nanocubes with optimized localized surface plasmon in a gap mode for a flexible MoS2 photodetector. Adv. Funct. Mater. 2019, 29, 1900541.

    Article  Google Scholar 

  18. Lee, K. J.; Kim, S.; Hong, W.; Park, H.; Jang, M. S.; Yu, K.; Choi, S. Y. Observation of wavelength-dependent quantum plasmon tunneling with varying the thickness of graphene spacer. Sci. Rep. 2019, 9, 1199.

    Article  Google Scholar 

  19. Mertens, J.; Eiden, A. L.; Sigle, D. O.; Huang, F. M.; Lombardo, A.; Sun, Z. P.; Sundaram, R. S.; Colli, A.; Tserkezis, C.; Aizpurua, J. et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 2013, 13, 5033–5038.

    Article  CAS  Google Scholar 

  20. Lee, K. J.; Kim, D.; Jang, B. C.; Kim, D. J.; Park, H.; Jung, D. Y.; Hong, W.; Kim, T. K.; Choi, Y. K.; Choi, S. Y. Multilayer graphene with a rippled structure as a spacer for improving plasmonic coupling. Adv. Funct. Mater. 2016, 26, 5093–5101.

    Article  CAS  Google Scholar 

  21. Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114–3122.

    Article  CAS  Google Scholar 

  22. Lee, K. J.; Kwon, K.; Kim, S.; Hong, W.; Park, J.; Yu, K.; Choi, S. Y. Gap-mode plasmon-induced photovoltaic effect in a vertical multilayer graphene homojunction. Adv. Opt. Mater. 2020, 8, 1901519.

    Article  CAS  Google Scholar 

  23. Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259–6264.

    Article  CAS  Google Scholar 

  24. Yang, S. Y.; Oh, J. G.; Jung, D. Y.; Choi, H.; Yu, C. H.; Shin, J.; Choi, C. G.; Cho, B. J.; Choi, S. Y. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175–181.

    Article  CAS  Google Scholar 

  25. Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

    Article  CAS  Google Scholar 

  26. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    Article  CAS  Google Scholar 

  27. Chen, J. J.; Wang, Q. S.; Meng, J.; Ke, X. X.; Van Tendeloo, G.; Bie, Y. Q.; Liu, J. K.; Liu, K. H.; Liao, Z. M.; Sun, D. et al. Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts. ACS Nano 2015, 9, 8851–8858.

    Article  CAS  Google Scholar 

  28. Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    Article  CAS  Google Scholar 

  29. Lee, H. S.; Ahn, J.; Shim, W.; Im, S.; Hwang, D. K. 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection. Appl. Phys. Lett. 2018, 113, 163102.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) through Basic Research Program (No. 2019R1A2C2009171) and Creative Materials Discovery Program (No. 2016M3D1A1900035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yool Choi.

Electronic Supplementary Material

12274_2020_3154_MOESM1_ESM.pdf

Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.J., Park, C., Jin, H.J. et al. Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time. Nano Res. 14, 1305–1310 (2021). https://doi.org/10.1007/s12274-020-3154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3154-5

Keywords

Navigation