Skip to main content
Log in

The associated killing of hepatoma cells using multilayer drug-loaded mats combined with fast neutron therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemotherapeutic and radiation therapy have emerged as two most important treatment strategies to treat cancer in clinical practice; however, to improve anticancer efficacy, combination chemotherapy still remains challenge. Dichloroacetate (DCA) could produce significant cytotoxic effects in certain tumor cells through its distinct mechanism. Radiation therapy with fast neutrons (FNT) has high relative biolgical effectiveness compared to other radiotherapeutics. Herein, we reported the combination chemotherapy with FNT for effective tumor growth inhibition with the assistance of a multilayered nanofiber loading DCA and DCA derivatives. We first synthesized a biodegradable polylysine to condense DCA with negative charge, or to conjugate DCA by condensing synthesis, to obtain Ion-DCA and Co-DCA, respectively. DCA, Ion-DCA or Co-DCA was then loaded into fibers to form multilayer drug-loaded mats. Upon adhesion on the surface of subcutaneous and orthotopic liver tumors, the multilayer drug-loaded mats realized a controllable release of DCA, which reversed the Warburg effect and inhibited cancer cell proliferation. Meantime, irradiation of fast neutrons could seriously damage DNA structure. Combination of the controllable release of DCA and FNT resulted in synergistic cell apoptosis in vitro, and the tumor inhibition in vivo. This study thus provides a new approach to integrate chemotherapy and FNT with the assistance of biocompatible nanofiber for synergistic tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, S. S.; Li, J. C.; Lyu, Y.; Huang, J. G.; Pu, K. Y. Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 2020, 142, 7075–7082.

    Article  CAS  Google Scholar 

  2. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug. Dis. 2019, 18, 175–196.

    Article  CAS  Google Scholar 

  3. Li, J. C.; Cui, D.; Huang, J. G.; He, S. S.; Yang, Z. B.; Zhang, Y.; Luo, Y.; Pu, K. Y. Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 12680–12687.

    Article  CAS  Google Scholar 

  4. Shao, N. N.; Qi, Y. X.; Lu, H. T.; He, D. Y.; Li, B.; Huang, Y. B. Photostability highly improved nanoparticles based on IR-780 and negative charged copolymer for enhanced photothermal therapy. ACS Biomater. Sci. Eng. 2019, 5, 795–804.

    Article  CAS  Google Scholar 

  5. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  CAS  Google Scholar 

  6. Abrahamse, H.; Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364.

    Article  CAS  Google Scholar 

  7. Jiang, Y. Y.; Li, J. C.; Zeng, Z. L.; Xie, C.; Lyu, Y.; Pu, K. Y. Organic photodynamic nanoinhibitor for synergistic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 8161–8165.

    Article  CAS  Google Scholar 

  8. Li, J. C.; Huang, J. G.; Lyu, Y.; Huang, J. S.; Jiang, Y. Y.; Xie, C.; Pu, K. Y. Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc. 2019, 141, 4073–4079.

    Article  CAS  Google Scholar 

  9. Ji, W. D.; Sun, B.; Su, C. Q. Targeting micrornas in cancer gene therapy. Genes. 2017, 8, 21.

    Article  Google Scholar 

  10. Qi, Y. X.; Guo, H. H.; Hu, N. N.; He, D. Y.; Zhang, S.; Chu, Y. J.; Huang, Y. B.; Li, X.; Sun, L. L.; Jin, N. Y. Preclinical pharmacology and toxicology study of ad-htert-e1a-apoptin, a novel dual cancer-specific oncolytic adenovirus. Toxicol. Appl. Pharm. 2014, 280, 362–369.

    Article  CAS  Google Scholar 

  11. Barendsen, G. W. Dose-survival curves of human cells in tissue culture irradiated with alpha-, beta-, 20-kV. X- and 200-kV. X-radiation. Nature 1962, 193, 1153–1155.

    Article  CAS  Google Scholar 

  12. Laramore, G. E.; Griffith, J. T.; Boespflug, M.; Pelton, J. G.; Griffin, T.; Griffin, B. R.; Russell, K. J.; Koh, W.; Parker, R. G.; Davis, L. W. Fast neutron radiotherapy for sarcomas of soft tissue, bone, and cartilage. Am. J. Clin. Oncol. 1989, 12, 320–326.

    Article  CAS  Google Scholar 

  13. Berry, R. J.; Oliver, R.; Porter, E. H. A fast-neutron source for radiotherapy. Nature. 1963, 199, 923.

    Article  CAS  Google Scholar 

  14. Gragg, R. L.; Humphrey, R. M.; Meyn, R. E. The response of chinese hamster ovary cells to fast neutron radiotherapy beams: I. Relative biological effectiveness and oxygen enhancement ratio. Radiat. Res. 1976, 65, 71–82.

    Article  CAS  Google Scholar 

  15. Curtis, S. B. An analysis of human kidney cell oxygen-enhancement ratios for fast-neutron beams and a prediction for negative pion beams. Radiat. Res. 1971, 46, 557–579.

    Article  CAS  Google Scholar 

  16. Specht, H. M.; Neff, T.; Reuschel, W.; Wagner, F. M.; Kampfer, S.; Wilkens, J. J.; Petry, W.; Combs, S. E. Paving the road for modern particle therapy—What can we learn from the experience gained with fast neutron therapy in munich? Front. Oncol. 2015, 5, 262.

    Article  Google Scholar 

  17. Sasaki, M. S.; Endo, S.; Hoshi, M.; Nomura, T. Neutron relative biological effectiveness in hiroshima and nagasaki atomic bomb survivors: A critical review. J. Radiat. Res. 2016, 57, 583–595.

    Article  CAS  Google Scholar 

  18. Satoh, K.; Yasuda, H.; Kawakami, H.; Tashiro, S. Relative biological effectiveness of neutrons derived from the excess relative risk model with the atomic bomb survivors data managed by hiroshima university. Radiat. Prot. Dosim. 2018, 180, 346–350.

    Article  CAS  Google Scholar 

  19. Hiraga, F.; Ooie, T. Synergistic effects of fast-neutron dose per epithermal neutron and 10B concentration on relative-biological-effectiveness dose for accelerator-based boron neutron capture therapy. Appl. Radiat. Isotopes 2019, 144, 1–4.

    Article  CAS  Google Scholar 

  20. Zabihi, A.; Tello, J.; Incerti, S.; Francis, Z.; Forozani, G.; Semsarha, F.; Moslehi, A.; Bernal, M. A. Determination of fast neutron rbe using a fully mechanistic computational model. Appl. Radiat. Isotopes 2020, 156, 108952.

    Article  Google Scholar 

  21. Luderer, M. J.; De La Puente, P.; Azab, A. K. Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm. Res. 2015, 32, 2824–2836.

    Article  CAS  Google Scholar 

  22. Masunaga, S. I.; Ono, K.; Akuta, K.; Akaboshi, M.; Abe, M.; Ando, K.; Koike, S. The radiosensitivity of quiescent cell populations in murine solid tumors in irradiation with fast neutrons. Int. J. Radiat. Oncol. 1994, 29, 239–242.

    Article  CAS  Google Scholar 

  23. Schwartz, D. L.; Einck, J.; Bellon, J.; Laramore, G. E. Fast neutron radiotherapy for soft tissue and cartilaginous sarcomas at high risk for local recurrence. Int. J. Radiat. Oncol. 2001, 50, 449–456.

    Article  CAS  Google Scholar 

  24. Jing, S. W.; Guo, H. H.; Qi, Y. X.; Yang, G. F.; Huang, Y. B. A portable fast neutron irradiation system for tumor therapy. Appl. Radiat. Isotopes 2020, 160, 109138.

    Article  CAS  Google Scholar 

  25. Pavlides, S.; Whitaker-Menezes, D.; Castello-Cros, R.; Flomenberg, N.; Witkiewicz, A. K.; Frank, P. G.; Casimiro, M. C.; Wang, C. G.; Fortina, P.; Addya, S. The reverse warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009, 8, 3984–4001.

    Article  CAS  Google Scholar 

  26. Spinelli, J. B.; Yoon, H.; Ringel, A. E.; Jeanfavre, S.; Clish, C. B.; Haigis, M. C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 2017, 358, 941–946.

    Article  CAS  Google Scholar 

  27. Fang, E. H.; Wang, J. Q.; Hong, M.; Zheng, L. D.; Tong, Q. S. Valproic acid suppresses warburg effect and tumor progression in neuroblastoma. Biochem. Biophys. Res. Commun. 2019, 508, 9–16.

    Article  CAS  Google Scholar 

  28. Hendry, J. H.; Potten, C. S.; Chadwick, C.; Bianchi, M. Cell death (apoptosis) in the mouse small intestine after low doses: Effects of dose-rate, 14.7 meV neutrons, and 600 meV (maximum energy) neutrons. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1982, 42, 611–620.

    Article  CAS  Google Scholar 

  29. Liu, D. X.; Liu, S.; Jing, X. B.; Li, X. Y.; Li, W. L.; Huang, Y. B. Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials 2012, 33, 4362–4369.

    Article  CAS  Google Scholar 

  30. Liu, D. X.; Wang, F. F.; Yue, J.; Jing, X. B.; Huang, Y. B. Metabolism targeting therapy of dichloroacetate-loaded electrospun mats on colorectal cancer. Drug. Deliv. 2015, 22, 136–143.

    Article  CAS  Google Scholar 

  31. Zhang, Z. Y.; Liu, S.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Jing, X. B.; Chen, X. S.; Huang, Y. B. Time-programmed dca and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release 2016, 235, 125–133.

    Article  CAS  Google Scholar 

  32. Nias, A. H. W.; Greene, D.; Fox, M.; Thomas, R. L. Effect of 14 mev monoenergetic neutrons on hela and p388f cells in vitro. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1968, 13, 449–456.

    Article  Google Scholar 

  33. Wu, C.; Xu, Q.; Chen, X. Y.; Liu, J. G. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int. J. Nanomedicine 2019, 14, 7515–7531.

    Article  CAS  Google Scholar 

  34. Grass, G. M.; Sweetana, S. A. In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm. Res. 1988, 5, 372–376.

    Article  CAS  Google Scholar 

  35. Chen, S.; Cheng, A. C.; Wang, M. S.; Peng, X. Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluorescein annexin v-fitc/pi double labeling. World. J. Gastroenterol. 2008, 14, 2174–2178.

    Article  CAS  Google Scholar 

  36. Karthick, V.; Panda, S.; Kumar, V. G.; Kumar, D.; Shrestha, L. K.; Ariga, K.; Vasanth, K.; Chinnathambi, S.; Dhas, T. S.; Suganya, K. S. U. Quercetin loaded plga microspheres induce apoptosis in breast cancer cells. Appl. Surf. Sci. 2019, 487, 211–217.

    Article  CAS  Google Scholar 

  37. Van Engeland, M.; Nieland, L. J. M.; Ramaekers, F. C. S.; Schutte, B.; Reutelingsperger, C. P. M. Annexin v-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry Part A 1998, 31, 1–9.

    Article  CAS  Google Scholar 

  38. Darzynkiewicz, Z.; Li, X.; Gong, J. P. Assays of cell viability: Discrimination of cells dying by apoptosis. Method. Cell. Biol. 1994, 41, 15–38.

    Article  CAS  Google Scholar 

  39. Sun, M.; Li, D. P.; Wang, X.; He, L.; Lv, X. D.; Xu, Y.; Tang, R. P. Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity. J. Mater. Chem. B 2019, 7, 3692–3703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51273194, 21975246 and 51903233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubin Huang or Ningyi Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Jing, S., He, S. et al. The associated killing of hepatoma cells using multilayer drug-loaded mats combined with fast neutron therapy. Nano Res. 14, 778–787 (2021). https://doi.org/10.1007/s12274-020-3113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3113-1

Keywords

Navigation