Skip to main content
Log in

Space-confined growth of metal halide perovskite crystal films

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal halide perovskites, as a new generation of optoelectronic materials, have attracted a great deal of interest due to their remarkable intrinsic properties. Due to the excellent optoelectronic properties, the perovskite crystals are widely used in lasers, photodetectors, X-ray detectors and solar cells. Considering the device performance and fabrication requirements, proper thickness of the crystal is required to avoid carrier loss and simultaneously ensure sufficient light absorption, which can realize the full potential of its excellent carrier transport property. Thus, the fabrication of perovskite crystal in a thin film with an adjustable thickness is highly desirable. The space-confined method has been demonstrated to be an effective way of preparing perovskite with controlled thickness. In this method, the thickness of perovskite can be regulated flexibly in a geometric confined space. Moreover, the size, quality and architecture of perovskite crystal films are also major concerns for practical photoelectric devices, which can also be optimized by the space-confined method owing to its good adaptability towards various modified strategies. In a word, the space-confined method is not only a simple and conventional way to adjust the thickness of perovskite crystal films, but also provides a platform to optimize their size, quality and architecture through applying appropriate strategies to the confined space. Herein, we review the space-confined growth of perovskite crystal films. Particularly, various modified strategies based on the space-confined method applied to the optimization of thickness, size, quality and architecture are highlighted. Then the stability investigating and component regulating of perovskite crystal films would be also mentioned. Furthermore, the correlation between the perovskite thickness and the device performance is discussed. Finally, several key challenges and proposed solutions of perovskite thin films based on the space-confined method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K. J.; Pandey, S. S.; Ma, T. L. et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1,060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011.

    CAS  Google Scholar 

  2. Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812–2824.

    CAS  Google Scholar 

  3. Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

    CAS  Google Scholar 

  4. Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.

    CAS  Google Scholar 

  5. Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534.

    CAS  Google Scholar 

  6. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    CAS  Google Scholar 

  7. Bi, D. Q.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J. S.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J. P. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170.

    Google Scholar 

  8. Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

    CAS  Google Scholar 

  9. Lv, Q. R.; Lian, Z. P.; He, W. H.; Sun, J. L.; Li, Q.; Yan, Q. F. A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films. J. Mater. Chem. C 2018, 6, 4464–4470.

    CAS  Google Scholar 

  10. Han, L. P.; Liu, C.; Wu, L. L.; Zhang, J. Q. Observation of the growth of MAPbBr3 single-crystalline thin film based on space-limited method. J. Cryst. Growth 2018, 501, 27–33.

    CAS  Google Scholar 

  11. Yang, Z. Q.; Deng, Y. H.; Zhang, X. W.; Wang, S.; Chen, H. Z.; Yang, S.; Khurgin, J.; Fang, N. X.; Zhang, X.; Ma, R. M. Highperformance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333.

    Google Scholar 

  12. Peng, W.; Wang, L. F.; Murali, B.; Ho, K. T.; Bera, A.; Cho, N.; Kang, C. F.; Burlakov, V. M.; Pan, J.; Sinatra, L. et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383–3390.

    CAS  Google Scholar 

  13. Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525–13532.

    CAS  Google Scholar 

  14. Wang, Y. P.; Sun, X.; Chen, Z. Z.; Sun, Y. Y.; Zhang, S. B.; Lu, T. M.; Wertz, E.; Shi, J. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 2017, 29, 1702643.

    Google Scholar 

  15. Liu, Y. C.; Sun, J. K.; Yang, Z.; Yang, D.; Ren, X. D.; Xu, H.; Yang, Z. P.; Liu, S. Z. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829–1837.

    CAS  Google Scholar 

  16. Liu, Y. C.; Ren, X. D.; Zhang, J.; Yang, Z.; Yang, D.; Yu, F. Y.; Sun, J. K.; Zhao, C. M.; Yao, Z.; Wang, B. et al. 120 mm single-crystalline perovskite and wafers: Towards viable applications. Sci. China Chem. 2017, 60, 1367–1376.

    CAS  Google Scholar 

  17. Chen, Z. L.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X. P.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 2019, 4, 1258–1259.

    CAS  Google Scholar 

  18. Chen, Z. L.; Dong, Q. F.; Liu, Y.; Bao, C. X.; Fang, Y. J.; Lin, Y.; Tang, S.; Wang, Q.; Xiao, X.; Bai, Y. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 2017, 8, 1890.

    Google Scholar 

  19. Wang, X. D.; Li, W. G.; Liao, J. F.; Kuang, D. B. Recent advances in halide perovskite single-crystal thin films: Fabrication methods and optoelectronic applications. Sol. RRL 2019, 3, 1800294.

    Google Scholar 

  20. Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

    Google Scholar 

  21. Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M. CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781–3786.

    CAS  Google Scholar 

  22. Dang, Y. Y.; Liu, Y.; Sun, Y. X.; Yuan, D. S.; Liu, X. L.; Lu, W. Q.; Liu, G. F.; Xia, H. B.; Tao, X. T. Bulk crystal growth of hybrid perovskite material CH3NH3PM3. CrystEngComm 2015, 17, 665–670.

    CAS  Google Scholar 

  23. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    CAS  Google Scholar 

  24. Chen, Y. X.; Ge, Q. Q.; Shi, Y.; Liu, J.; Xue, D. J.; Ma, J. Y.; Ding, J.; Yan, H. J.; Hu, J. S.; Wan, L. J. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196–16199.

    CAS  Google Scholar 

  25. Xiao, X.; Dai, J.; Fang, Y. J.; Zhao, J. J.; Zheng, X. P.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. S. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684–688.

    CAS  Google Scholar 

  26. Wang, Q.; Bai, D. L.; Jin, Z. W.; Liu, S. Z. Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment. RSC Adv. 2018, 8, 14848–14853.

    CAS  Google Scholar 

  27. Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Yang, D.; Ren, X. D.; Pang, L. Q.; Liu, S. Z. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 2016, 28, 9204–9209.

    CAS  Google Scholar 

  28. Rao, H. S.; Li, W. G.; Chen, B. X.; Kuang, D. B.; Su, C. Y. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. 2017, 29, 1602639.

    Google Scholar 

  29. Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.

    CAS  Google Scholar 

  30. Zhang, H. J.; Liu, X.; Dong, J. P.; Yu, H.; Zhou, C.; Zhang, B. B.; Xu, Y. D.; Jie, W. Q. Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 2017, 17, 6426–6431.

    CAS  Google Scholar 

  31. Kim, W.; Jung, M. S.; Lee, S.; Choi, Y. J.; Kim, J. K.; Chai, S. U.; Kim, W.; Choi, D. G.; Ahn, H.; Cho, J. H. et al. Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 2018, 8, 1702369.

    Google Scholar 

  32. Yue, H. L.; Sung, H. H.; Chen, F. C. Seeded space-limited crystallization of CH3NH3PbI3 single-crystal plates for perovskite solar cells. Adv. Electron. Mater. 2018, 4, 1700655.

    Google Scholar 

  33. Gao, J.; Liang, Q. B.; Li, G. H.; Ji, T.; Liu, Y. C.; Fan, M. M.; Hao, Y. Y.; Liu, S. Z.; Wu, Y. C.; Cui, Y. X. Single-crystalline lead halide perovskite wafers for high performance photodetectors. J. Mater. Chem. C 2019, 7, 8357–8363.

    Google Scholar 

  34. Gu, Z. K.; Huang, Z. D.; Li, C.; Li, M. Z.; Song, Y. L. A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, eaat2390.

    Google Scholar 

  35. Rao, H. S.; Chen, B. X.; Wang, X. D.; Kuang, D. B.; Su, C. Y. A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 2017, 53, 5163–5166.

    CAS  Google Scholar 

  36. Edri, E.; Kirmayer, S.; Henning, A.; Mukhopadhyay, S.; Gartsman, K.; Rosenwaks, Y.; Hodes, G.; Cahen, D. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 2014, 14, 1000–1004.

    CAS  Google Scholar 

  37. He, X. X.; Wang, Y. G; Li, K.; Wang, X.; Liu, P.; Yang, Y. J.; Liao, Q.; Zhai, T. Y.; Yao, J. N.; Fu, H. B. Oriented growth of ultrathin single crystals of 2D Ruddlesden-Popper hybrid lead iodide perovskites for high-performance photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15905–15912.

    CAS  Google Scholar 

  38. Huang, Y.; Zhang, Y.; Sun, J. L.; Wang, X. G.; Sun, J. L.; Chen, Q.; Pan, C. F.; Zhou, H. P. The exploration of carrier behavior in the inverted mixed perovskite single-crystal solar cells. Adv. Mater. Interfaces 2018, 5, 1800224.

    Google Scholar 

  39. He, M.; Li, B.; Cui, X.; Jiang, B. B.; He, Y. J.; Chen, Y. H.; O’Neil, D.; Szymanski, P.; Ei-Sayed, M. A.; Huang, J. S. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 2017, 8, 16045.

    CAS  Google Scholar 

  40. Xiao, Z. G.; Dong, Q. F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503–6509.

    CAS  Google Scholar 

  41. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    CAS  Google Scholar 

  42. Ha, S. T.; Shen, C.; Zhang, J.; Xiong, Q. H. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics 2016, 10, 115–121.

    CAS  Google Scholar 

  43. Kamminga, M. E.; Fang, H. H.; Filip, M. R.; Giustino, F.; Baas, J.; Blake, G. R.; Loi, M. A.; Palstra, T. T. M. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 2016, 28, 4554–4562.

    CAS  Google Scholar 

  44. Gan, L.; He, H. P.; Li, S. X.; Li, J.; Ye, Z. Z. Distinctive excitonic recombination in solution-processed layered organic-inorganic hybrid two-dimensional perovskites. J. Mater. Chem. C 2016, 4, 10198–10204.

    CAS  Google Scholar 

  45. Mitzi, D. B. A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4. J. Solid State Chem. 1999, 145, 694–704.

    CAS  Google Scholar 

  46. Lédée, F.; Trippé-Allard, G.; Diab, H.; Audebert, P.; Garrot, D.; Lauret, J. S.; Deleporte, E. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 2017, 19, 2598–2602.

    Google Scholar 

  47. Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.

    Google Scholar 

  48. Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D. L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330.

    CAS  Google Scholar 

  49. Milot, R. L.; Sutton, R. J.; Eperon, G. E.; Haghighirad, A. A.; Martinez Hardigree, J.; Miranda, L.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett. 2016, 16, 7001–7007.

    CAS  Google Scholar 

  50. Fu, X. W.; Dong, N.; Lian, G.; Lv, S.; Zhao, T. Y.; Wang, Q. L.; Cui, D. L.; Wong, C. P. High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano Lett. 2018, 18, 1213–1220.

    CAS  Google Scholar 

  51. Wang, Y. F.; Liu, D. T.; Zhang, P.; Zhang, T.; Ahmad, W.; Ying, X. X.; Wang, F.; Li, J.; Chen, L.; Wu, J. et al. Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 2018, 61, 1536–1548.

    CAS  Google Scholar 

  52. Wang, W. H.; Ma, Y. R.; Qi, L. M. High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater. 2017, 27, 1603653.

    Google Scholar 

  53. Zhu, P. C.; Gu, S.; Shen, X. P.; Xu, N.; Tan, Y. L.; Zhuang, S. D.; Deng, Y.; Lu, Z. D.; Wang, Z. L.; Zhu, J. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett. 2016, 16, 871–876.

    CAS  Google Scholar 

  54. Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201–2208.

    CAS  Google Scholar 

  55. Zhuo, S. F.; Zhang, J. F.; Shi, Y. M.; Huang, Y.; Zhang, B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem, Int. Ed. 2015, 54, 5693–5696.

    CAS  Google Scholar 

  56. Zhang, Y.; Du, J.; Wu, X. H.; Zhang, G. Q.; Chu, Y. L.; Liu, D. P.; Zhao, Y. X.; Liang, Z. Q.; Huang, J. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS Appl. Mater. Interfaces 2015, 7, 21634–21638.

    CAS  Google Scholar 

  57. Chen, K.; Tüysüz, H. Morphology-controlled synthesis of organometal halide perovskite inverse opals. Angew. Chem., Int. Ed. 2015, 54, 13806–13810.

    CAS  Google Scholar 

  58. Zeng, J. P.; Li, X. M.; Wu, Y.; Yang, D. D.; Sun, Z. G.; Song, Z. H.; Wang, H.; Zeng, H. B. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 2018, 28, 1804394.

    Google Scholar 

  59. Liu, R. H.; Zhou, H.; Song, Z. N.; Yang, X. H.; Wu, D. J.; Song, Z. H.; Wang, H.; Yan, Y. F. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 2019, 11, 9302–9309.

    CAS  Google Scholar 

  60. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

    Google Scholar 

  61. Chang, X. W.; Li, W. P.; Zhu, L. Q.; Liu, H. C.; Geng, H. F.; Xiang, S. S.; Liu, J. M.; Chen, H. N. Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces 2016, 8, 33649–33655.

    CAS  Google Scholar 

  62. Zuo, Z. Y.; Ding, J. X.; Zhao, Y.; Du, S. J.; Li, Y. F.; Zhan, X. Y.; Cui, H. Z. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 2017, 8, 684–689.

    CAS  Google Scholar 

  63. Mao, J.; Sha, W. E. I.; Zhang, H.; Ren, X. G.; Zhuang, J. Q.; Roy, V. A. L.; Wong, K. S.; Choy, W. C. H. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 2017, 27, 1606525.

    Google Scholar 

  64. Lee, L.; Baek, J. M.; Park, K. S.; Lee, Y. E.; Shrestha, N. K.; Sung, M. M. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 2017, 8, 15882.

    CAS  Google Scholar 

  65. Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963.

    CAS  Google Scholar 

  66. Yang, S.; Wang, Y.; Liu, P. R.; Cheng, Y. B.; Zhao, H. J.; Yang, H. G. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016.

    CAS  Google Scholar 

  67. Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538.

    CAS  Google Scholar 

  68. Mateker, W. R.; McGehee, M. D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 2017, 29, 1603940.

    Google Scholar 

  69. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147.

    CAS  Google Scholar 

  70. Li, X.; Tschumi, M.; Han, H. W.; Babkair, S. S.; Alzubaydi, R. A.; Ansari, A. A.; Habib, S. S.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 2015, 3, 551–555.

    CAS  Google Scholar 

  71. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

    Google Scholar 

  72. Zhao, J. J.; Deng, Y. H.; Wei, H. T.; Zheng, X. P.; Yu, Z. H.; Shao, Y. C.; Shield, J. E.; Huang, J. S. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.

  73. Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, A.; Han, L. Y. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.

    CAS  Google Scholar 

  74. Li, B.; Zhang, Y. N.; Zhang, L. Y.; Yin, L. W. Graded heterojunction engineering for hole-conductor-free perovskite solar cells with high hole extraction efficiency and conductivity. Adv. Mater. 2017, 29, 1701221.

    Google Scholar 

  75. Li, W. G.; Wang, X. D.; Liao, J. F.; Wei, Z. F.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B. A laminar MAPbBr3/MAPbBr3-x,Ix graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. J. Mater. Chem. C 2019, 7, 5670–5676.

    CAS  Google Scholar 

  76. Wei, W.; Zhang, Y.; Xu, Q.; Wei, H. T.; Fang, Y. J.; Wang, Q.; Deng, Y. H.; Li, T.; Gruverman, A.; Cao, L. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315–321.

    CAS  Google Scholar 

  77. Shaikh, P. A.; Shi, D.; Retamal, J. R. D.; Sheikh, A. D.; Haque, M. A.; Kang, C. F.; He, J. H.; Bakr, O. M.; Wu, T. Schottky junctions on perovskite single crystals: Light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C 2016, 4, 8304–8312.

    CAS  Google Scholar 

  78. Bai, Y.; Zhang, H. X.; Zhang, M. J.; Wang, D.; Zeng, H.; Zhao, J.; Xue, H.; Wu, G. Z.; Su, J.; Xie, Y. et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X = Cl, Br, I). Nanoscale 2020, 12, 1100–1108.

    CAS  Google Scholar 

  79. Gui, P. B.; Zhou, H.; Yao, F.; Song, Z. H.; Li, B. R.; Fang, G. J. Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 2019, 15, 1902618.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21673161 and 21905210), the Sino-German Center for Research Promotion (1400), and the Postdoctoral Innovation Talent Support Program of China (No. BX20180224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, J., Zeng, M. et al. Space-confined growth of metal halide perovskite crystal films. Nano Res. 14, 1609–1624 (2021). https://doi.org/10.1007/s12274-020-3050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3050-z

Keywords

Navigation