Skip to main content
Log in

Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) crystals are attractive due to their intriguing structures and properties which are strongly dependent on the synthesis conditions. To achieve their superior properties, it is of critical importance to fully understand the growth processes and mechanisms for tailored design and controlled growth of 2D crystals. Due to the high spatiotemporal resolution and the capability to mimic the realistic growth conditions, in situ transmission electron microscopy (TEM) becomes an effective way to monitor the growth process in real-time at the atomic scale, which is expected to provide atomic-scale insights into the nucleation and growth of 2D crystals. Here we review the recent in situ TEM works on the formation of 2D crystals under electron irradiation, thermal excitation as well as voltage bias. The underlying mechanisms are also elucidated in detail, providing key insights into the nucleation and formation of 2D crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  4. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  5. Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

    CAS  Google Scholar 

  6. Jiang, J.; Xu, T.; Lu, J. P.; Sun, L. T.; Ni, Z. H. Defect engineering in 2D materials: Precise manipulation and improved functionalities. Research 2019, 2019, 4641739.

    CAS  Google Scholar 

  7. Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

    CAS  Google Scholar 

  8. Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.

    CAS  Google Scholar 

  9. Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765.

    CAS  Google Scholar 

  10. Ziegler, A.; Graafsma, H.; Zhang, X. F.; Frenken, J. W. M. In-situ Materials Characterization: Across Spatial and Temporal Scales; Springer Science & Business Media: Berlin, 2014.

    Google Scholar 

  11. Xu, T.; Sun, L. T. Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247–3262.

    CAS  Google Scholar 

  12. Xu, T.; Sun, L. T. Investigation on material behavior in liquid by in situ TEM. Superlattices Microstruct. 2016, 99, 24–34.

    CAS  Google Scholar 

  13. Zhang, Q. B.; Yin, K. B.; Dong, H.; Zhou, Y. L.; Tan, X. D.; Yu, K. H.; Hu, X. H.; Xu, T.; Zhu, C.; Xia, W. W. et al. Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nat. Commun. 2017, 8, 14889.

    CAS  Google Scholar 

  14. Zhu, C.; Liang, S. X.; Song, E. H.; Zhou, Y. J.; Wang, W.; Shan, F.; Shi, Y. T.; Hao, C.; Yin, K. B.; Zhang, T. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 421.

    Google Scholar 

  15. He, L. B.; Zhang, L.; Tang, L. P.; Sun, J.; Zhang, Q. B.; Sun, L. T. Novel behaviors/properties of nanometals induced by surface effects. Mater. Today Nano 2018, 1, 8–21.

    Google Scholar 

  16. Zhou, Y.; Xu, T.; Yin, K.; He, L.; Banhart, F.; Sun, L. In situ observation of atomic-scale stability limit of Cu nanoparticles. Mater. Today Nano 2018, 4, 32–37.

    Google Scholar 

  17. Xu, H.; Wu, X.; Tian, X.; Li, J.; Chu, J.; Sun, L. Dynamic structure-properties characterization and manipulation in advanced nanodevices. Mater. Today Nano 2019, 7, 100042.

    Google Scholar 

  18. Wan, N.; Sun, L. T.; Hu, X. H.; Zhu, Y. Y.; Zha, L.; Xu, T.; Bi, H.; Sun, J.; Dong, F. Z. Charge supported growth and superplasticity of sodium nanostructures. Cryst. Growth Des. 2012, 12, 3899–3905.

    CAS  Google Scholar 

  19. Yu, K. H.; Xu, T.; Wu, X.; Wang, W.; Zhang, H.; Zhang, Q. B.; Tang, L. P.; Sun, L. T. In situ observation of crystalline silicon growth from SiO2 at atomic scale. Research 2019, 3289247.

  20. Zhang, H. T.; Wang, W.; Xu, T.; Xu, F.; Sun, L. T. Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Res. 2020, 13, 1912–1919.

    CAS  Google Scholar 

  21. Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rümmeli, M. H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340–11362.

    CAS  Google Scholar 

  22. Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

    Google Scholar 

  23. Liu, X. F.; Xu, T.; Wu, X.; Zhang, Z. H.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R. et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.

    Google Scholar 

  24. Xu, T.; Zhou, Y. L.; Tan, X. D.; Yin, K. B.; He, L. B.; Banhart, F.; Sun, L. T. Creating the smallest BN nanotube from bilayer h-BN. Adv. Funct. Mater. 2017, 27, 1603897.

    Google Scholar 

  25. Zhao, X. X.; Kotakoski, J.; Meyer, J. C.; Sutter, E.; Sutter, P.; Krasheninnikov, A. V.; Kaiser, U.; Zhou, W. Engineering and modifying two-dimensional materials by electron beams. MRS Bull. 2017, 42, 667–676.

    Google Scholar 

  26. Xu, T.; Yin, K. B.; Sun, L. T. In-situ study of electron irradiation on two-dimensional layered materials. Chin. Sci. Bull. 2017, 62, 2919–2930.

    Google Scholar 

  27. Rummeli, M. H.; Ta, H. Q.; Mendes, R. G.; Gonzalez-Martinez, I. G.; Zhao, L.; Gao, J.; Fu, L.; Gemming, T.; Bachmatiuk, A.; Liu, Z. F. New frontiers in electron beam-driven chemistry in and around graphene. Adv. Mater. 2018, 31, 1800715.

    Google Scholar 

  28. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    CAS  Google Scholar 

  29. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    CAS  Google Scholar 

  30. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Google Scholar 

  31. Sun, L. T.; Banhart, F.; Warner, J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37.

    CAS  Google Scholar 

  32. Xu, T.; Shen, Y. T.; Yin, K. B.; Sun, L. T. Precisely monitoring and tailoring 2D nanostructures at the atomic scale. APL Mater. 2019, 7, 050901.

    Google Scholar 

  33. Elibol, K.; Susi, T.; Argentero, G.; Reza Ahmadpour Monazam, M.; Pennycook, T. J.; Meyer, J. C.; Kotakoski, J. Atomic structure of intrinsic and electron-irradiation-induced defects in MoTe2. Chem. Mater. 2018, 30, 1230–1238.

    CAS  Google Scholar 

  34. Wang, S. S.; Lee, G. D.; Lee, S.; Yoon, E.; Warner, J. H. Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 2016, 10, 5419–5430.

    CAS  Google Scholar 

  35. Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.

    Google Scholar 

  36. Lin, J. H.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189–5197.

    CAS  Google Scholar 

  37. Zhu, H.; Wang, Q. X.; Cheng, L. X.; Addou, R.; Kim, J.; Kim, M. J.; Wallace, R. M. Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005–11014.

    CAS  Google Scholar 

  38. Chen, J.; Zhou, S.; Wen, Y.; Ryu, G. H.; Allen, C.; Lu, Y.; Kirkland, A. I.; Warner, J. H. In situ high temperature atomic level dynamics of large inversion domain formations in monolayer MoS2. Nanoscale 2019, 11, 1901–1913.

    CAS  Google Scholar 

  39. Ta, H. Q.; Yang, Q. X.; Liu, S. Y.; Bachmatiuk, A.; Mendes, R. G.; Gemming, T.; Liu, Y.; Liu, L. J.; Tokarska, K.; Patel, R. B. et al. In situ formation of free-standing single-atom-thick antiferromagnetic chromium membranes. Nano Lett. 2020, 20, 4354–4361.

    CAS  Google Scholar 

  40. Sutter, E.; Huang, Y.; Komsa, H. P.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Sutter, P. Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 2016, 16, 4410–4416.

    CAS  Google Scholar 

  41. Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

    Google Scholar 

  42. Zhao, X. X.; Dan, J. D.; Chen, J. Y.; Ding, Z. J.; Zhou, W.; Loh, K. P.; Pennycook, S. J. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 2018, 30, 1707281.

    Google Scholar 

  43. Egerton, R. F. Beam-induced motion of Adatoms in the transmission electron microscope. Microsc. Microanal. 2013, 19, 479–486.

    CAS  Google Scholar 

  44. Romdhane, F. B.; Cretu, O.; Debbichi, L.; Eriksson, O.; Lebegue, S.; Banhart, F. Quasi-2D Cu2S crystals on graphene: In-situ growth and ab-initio calculations. Small 2015, 11, 1253–1257.

    Google Scholar 

  45. Shen, Y. T.; Xu, T.; Tan, X. D.; He, L. B.; Yin, K. B.; Wan, N.; Sun, L. T. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.

    Google Scholar 

  46. Xu, T.; Xie, X.; Yin, K. B.; Sun, J.; He, L. B.; Sun, L. T. Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 2014, 10, 1724–1728.

    CAS  Google Scholar 

  47. Xu, T.; Yin, K. B.; Xie, X.; He, L. B.; Wang, B. J.; Sun, L. T. Size-dependent evolution of graphene nanopores under thermal excitation. Small 2012, 8, 3422–3426.

    CAS  Google Scholar 

  48. Zhao, J.; Deng, Q. M.; Bachmatiuk, A.; Sandeep, G.; Popov, A.; Eckert, J.; Rümmeli, M. H. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228–1232.

    CAS  Google Scholar 

  49. Quang, H. T.; Bachmatiuk, A.; Dianat, A.; Ortmann, F.; Zhao, J.; Warner, J. H.; Eckert, J.; Cunniberti, G.; Rümmeli, M. H. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 2015, 9, 11408–11413.

    CAS  Google Scholar 

  50. Yin, K. B.; Zhang, Y. Y.; Zhou, Y. L.; Sun, L. T.; Chisholm, M. F.; Pantelides, S. T.; Zhou, W. Unsupported single-atom-thick copper oxide monolayers. 2D Mater. 2017, 4, 011001.

    Google Scholar 

  51. Liu, Z.; Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Chiu, P. W.; Iijima, S.; Suenaga, K. In situ observation of step-edge in-plane growth of graphene in a STEM. Nat. Commun. 2014, 5, 4055.

    CAS  Google Scholar 

  52. Ta, H. Q.; Zhao, L.; Yin, W. J.; Pohl, D.; Rellinghaus, B.; Gemming, T.; Trzebicka, B.; Palisaitis, J.; Jing, G; Persson, P. O. Å. et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405–2411.

    CAS  Google Scholar 

  53. Zhao, J.; Deng, Q. M.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. 2014, 111, 15641–15646.

    CAS  Google Scholar 

  54. Börrnert, F.; Avdoshenko, S. M.; Bachmatiuk, A.; Ibrahim, I.; Büchner, B.; Cuniberti, G.; Rümmeli, M. H. Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene. Adv. Mater. 2012, 24, 5630–5635.

    Google Scholar 

  55. Bayer, B. C.; Kaindl, R.; Reza Ahmadpour Monazam, M.; Susi, T.; Kotakoski, J.; Gupta, T.; Eder, D.; Waldhauser, W.; Meyer, J. C. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758–8769.

    CAS  Google Scholar 

  56. Allen, F. I.; Kim, E.; Andresen, N. C.; Grigoropoulos, C. P.; Minor, A. M. In situ TEM Raman spectroscopy and laser-based materials modification. Ultramicroscopy 2017, 178, 33–37.

    CAS  Google Scholar 

  57. Xiang, B.; Hwang, D. J.; In, J. B.; Ryu, S. G.; Yoo, J. H.; Dubon, O.; Minor, A. M.; Grigoropoulos, C. P. In situ TEM near-field optical probing of nanoscale silicon crystallization. Nano Lett. 2012, 12, 2524–2529

    CAS  Google Scholar 

  58. Ben Romdhane, F.; Björkman, T.; Krasheninnikov, A. V.; Banhart, F. Solid-state growth of one- and two-dimensional silica structures on metal surfaces. J. Phys. Chem. C 2014, 118, 21001–21005.

    CAS  Google Scholar 

  59. Romdhane, F. B.; Bjorkman, T.; Rodríguez-Manzo, J. A.; Cretu, O.; Krasheninnikov, A. V.; Banhart, F. In situ growth of cellular two-dimensional silicon oxide on metal substrates. ACS Nano 2013, 7, 5175–5180.

    Google Scholar 

  60. Rodríguez-Manzo, J. A.; Pham-Huu, C.; Banhart, F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 2011, 5, 1529–1534.

    Google Scholar 

  61. Fei, L. F.; Lei, S. J.; Zhang, W. B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.

    CAS  Google Scholar 

  62. Hansen, L. P.; Johnson, E.; Brorson, M.; Helveg, S. Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 2014, 118, 22768–22773.

    CAS  Google Scholar 

  63. Sang, X. H.; Li, X. F.; Puretzky, A. A.; Geohegan, D. B.; Xiao, K.; Unocic, R. R. Atomic insight into thermolysis-driven growth of 2D MoS2. Adv. Funct. Mater. 2019, 29, 1902149.

    CAS  Google Scholar 

  64. Kondekar, N.; Boebinger, M. G.; Tian, M. K.; Kirmani, M. H.; McDowell, M. T. The effect of nickel on MoS2 growth revealed with in situ transmission electron microscopy. ACS Nano 2019, 13, 7117–7126.

    CAS  Google Scholar 

  65. Zhang, Y. N.; Zhang, Z.; Cheng, Y. F.; Cheng, F.; Wang, L. F.; Liu, N. S.; Li, L. Y.; Su, J.; Gao, Y. H. In situ TEM observation of controlled growth of two-dimensional WS2 with vertically aligned layers and high-temperature stability. Nano Energy 2020, 67, 104221.

    CAS  Google Scholar 

  66. Yu, K. H.; Zhao, W.; Wu, X.; Zhuang, J. N.; Hu, X. H.; Zhang, Q. B.; Sun, J.; Xu, T.; Chai, Y.; Ding, F. et al. In situ atomic-scale observation of monolayer graphene growth from SiC. Nano Res. 2018, 11, 2809–2820.

    CAS  Google Scholar 

  67. Sang, X. H.; Xie, Y.; Yilmaz, D. E.; Lotfi, R.; Alhabeb, M.; Ostadhossein, A.; Anasori, B.; Sun, W. W.; Li, X. F.; Xiao, K. et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. 2018, 9, 2266.

    Google Scholar 

  68. Huang, J. Y.; Ding, F.; Yakobson, B. I.; Lu, P.; Qi, L.; Li, J. In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. 2009, 106, 10103–10108.

    CAS  Google Scholar 

  69. Huang, C. W.; Chen, J. Y.; Chiu, C. H.; Hsin, C. L.; Tseng, T. Y.; Wu, W. W. Observing the evolution of graphene layers at high current density. Nano Res. 2016, 9, 3663–3670.

    CAS  Google Scholar 

  70. Westenfelder, B.; Meyer, J. C.; Biskupek, J.; Kurasch, S.; Scholz, F.; Krill III, C. E.; Kaiser, U. Transformations of carbon adsorbates on graphene substrates under extreme heat. Nano Lett. 2011, 11, 5123–5127.

    CAS  Google Scholar 

  71. Barreiro, A.; Börrnert, F.; Avdoshenko, S. M.; Rellinghaus, B.; Cuniberti, G.; Rümmeli, M. H.; Vandersypen, L. M. K. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 2013, 3, 1115.

    Google Scholar 

  72. Fu, M. S.; Yao, Z. P.; Ma, X.; Dong, H.; Sun, K.; Hwang, S.; Hu, E. Y.; Gan, H.; Yao, Y.; Stach, E. A. et al. Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy 2019, 63, 103882.

    CAS  Google Scholar 

  73. He, K.; Yao, Z. P.; Hwang, S.; Li, N.; Sun, K.; Gan, H.; Du, Y. P.; Zhang, H.; Wolverton, C.; Su, D. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes. Nano Lett. 2017, 17, 5726–5733.

    CAS  Google Scholar 

  74. Kühne, M.; Börrnert, F.; Fecher, S.; Ghorbani-Asl, M.; Biskupek, J.; Samuelis, D.; Krasheninnikov, A. V.; Kaiser, U.; Smet, J. H. Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234–239.

    Google Scholar 

  75. Huang, Q. M.; Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China Chem. 2018, 61, 222–227.

    CAS  Google Scholar 

  76. Kim, S.; Yao, Z. P.; Lim, J. M.; Hersam, M. C.; Wolverton, C.; Dravid, V. P.; He, K. Atomic-scale observation of electrochemically reversible phase transformations in SnSe2 single crystals. Adv. Mater. 2018, 30, 1804925.

    Google Scholar 

  77. Sun, C. L.; Zhao, K. N.; He, Y.; Zheng, J. M.; Xu, W. W.; Zhang, C. Y.; Wang, X.; Guo, M. H.; Mai, L. Q.; Wang, C. M. et al. Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-ion battery. ACS Appl. Mater. Interfaces 2019, 11, 20762–20769.

    CAS  Google Scholar 

  78. Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

    CAS  Google Scholar 

  79. Gao, P.; Wang, L. P.; Zhang, Y. Y.; Huang, Y.; Liu, K. H. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 2015, 9, 11296–11301.

    CAS  Google Scholar 

  80. Gao, P.; Wang, L. P.; Zhang, Y. Y.; Huang, Y.; Liao, L.; Sutter, P.; Liu, K. H.; Yu, D. P.; Wang, E. G. High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2. Nano Lett. 2016, 16, 5582–5588.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11525415, 61974021, 61601116, and 51420105003) and the Natural Science Foundation of Jiangsu Province (No. BK20181284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Xu or Litao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yuan, D., Zhang, H. et al. Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy. Nano Res. 14, 1650–1658 (2021). https://doi.org/10.1007/s12274-020-3034-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3034-z

Keywords

Navigation