Skip to main content
Log in

Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium superionic conductor (NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries (SIBs) due to their favorable ionic conductivity and robust structural stability. However, their high cost and relatively low energy density restrict their further practical application, which can be tailored by widening the operating voltages with earth-abundant elements such as Mn. Here, we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity. The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode (76.6% capacity retention over 5,000 cycles at 20 C) for SIBs, which exhibits high reversible capacity (113.1 mAh·g−1 at 0.5 C) with relatively low volume change (7.6%). Importantly, its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated, and the full-cell configuration is demonstrated. This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

    Google Scholar 

  2. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  3. You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243–7248.

    CAS  Google Scholar 

  4. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    CAS  Google Scholar 

  5. Wu, F. X.; Zhao, C. L.; Chen, S. Q.; Lu, Y. X.; Hou, Y. L.; Hu, Y. S.; Maier, J.; Yu, Y. Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960–973.

    CAS  Google Scholar 

  6. Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in phosphate cathode materials for sodium-ion batteries. Acta Phys.—Chim. Sin. 2020, 36, 1905018.

    Google Scholar 

  7. Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough, J. B. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836–7841.

    CAS  Google Scholar 

  8. Gao, H. C.; Seymour, L. D.; Xin, S.; Xue, L. G.; Henkelman, G.; Goodenough, J. B. Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 2018, 140, 18192–18199.

    CAS  Google Scholar 

  9. Zhu, T.; Hu, P.; Wang, X. P.; Liu, Z. H.; Luo, W.; Owusu, K. A.; Cao, W. W.; Shi, C. W.; Li, J. T.; Zhou, L. et al. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803436.

    Google Scholar 

  10. Zhang, J.; Liu, Y. C.; Zhao, X. D.; He, L. H.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 2020, 32, 1906348.

    CAS  Google Scholar 

  11. Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900.

    CAS  Google Scholar 

  12. Cao, X. X.; Pan, A. Q.; Liu, S. N.; Zhou, J.; Li, S. T.; Cao, G. Z.; Liu, J.; Liang, S. Q. Chemical synthesis of 3D graphene-like cages for sodium-ion batteries applications. Adv. Energy Mater. 2017, 7, 1700797.

    Google Scholar 

  13. Zhao, Y. L.; Cao, X. X.; Fang, G. Z.; Wang, Y. P.; Yang, H. L.; Liang, S. Q.; Pan, A. Q.; Cao, G. Z. Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem. Eng. J. 2018, 339, 162–169.

    CAS  Google Scholar 

  14. Chen, M. Z.; Hua, W. B.; Xiao, J.; Cortie, D.; Chen, W. H.; Wang, E. H.; Hu, Z.; Gu, Q. F.; Wang, X. L.; Indris, S. et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1480.

    Google Scholar 

  15. Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207–5215.

    CAS  Google Scholar 

  16. Li, J. W.; Cao, X. X.; Pan, A. Q.; Zhao, Y. L.; Yang, H. L.; Cao, G. Z.; Liang, S. Q. Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem. Eng. J. 2018, 335, 301–308.

    CAS  Google Scholar 

  17. Cao, X. X.; Pan, A. Q.; Yin, B.; Fang, G. Z.; Wang, Y. P.; Kong, X. Z.; Zhu, T.; Zhou, J.; Cao, G. Z.; Liang, S. Q. Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 2019, 60, 312–323.

    CAS  Google Scholar 

  18. Li, H. X.; Jin, T.; Chen, X. B.; Lai, Y. Q.; Zhang, Z. A.; Bao, W. Z.; Jiao, L. F. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2018, 8, 1801418.

    Google Scholar 

  19. Ghosh, S.; Barman, N.; Mazumder, M.; Pati, S. K.; Rousse, G.; Senguttuvan, P. High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures. Adv. Energy Mater. 2020, 10, 1902918.

    CAS  Google Scholar 

  20. Chen, F.; Kovrugin, V. M.; David, R.; Mentré, O.; Fauth, F.; Chotard, J. N.; Masquelier, C. A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3. Small Methods 2019, 3, 1800218.

    CAS  Google Scholar 

  21. Liu, C. F.; Neale, Z. G.; Cao, G. Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123.

    CAS  Google Scholar 

  22. Park, J. S.; Kim, J.; Jo, J. H.; Myung, S. T. Role of the Mn substituent in Na3V2(PO4)3 for high-rate sodium storage. J. Mater. Chem. A 2018, 6, 16627–16637.

    CAS  Google Scholar 

  23. Liu, T. F.; Zhang, Y. P.; Jiang, Z. G.; Zeng, X. Q.; Ji, J. P.; Li, Z. H.; Gao, X. H.; Sun, M. H.; Lin, Z.; Ling, M. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512–1533.

    CAS  Google Scholar 

  24. Wang, Y. X.; Wang, Y. X.; Wang, Y. X.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019, 5, 2547–2570.

    CAS  Google Scholar 

  25. Liang, S. Q.; Cao, X. X.; Wang, Y. P.; Hu, Y.; Pan, A. Q.; Cao, G. Z. Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 2016, 22, 48–58.

    CAS  Google Scholar 

  26. Wang, S. B.; Fang, Y. J.; Wang, X.; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 131, 770–773.

    Google Scholar 

  27. Lan, K.; Wei, Q. L.; Wang, R. C.; Xia, Y.; Tan, S. S.; Wang, Y. X.; Elzatahry, A.; Feng, P. Y.; Mai, L. Q.; Zhao, D. Y. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J. Am. Chem. Soc. 2019, 141, 16755–16762.

    CAS  Google Scholar 

  28. Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450.

    CAS  Google Scholar 

  29. Zhang, D. D.; Li, J.; Su, Z.; Hu, S. Y.; Li, H. P.; Yan, Y. W. Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 2018, 7, 246–255.

    Google Scholar 

  30. Luo, Z. G.; Zhou, J.; Wang, L. R.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 2016, 4, 15302–15308.

    CAS  Google Scholar 

  31. Fang, G. Z.; Wu, Z. X.; Zhou, J.; Zhu, C. Y.; Cao, X. X.; Lin, T. Q.; Chen, Y. M.; Wang, C.; Pan, A. Q.; Liang, S. Q. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 2018, 8, 1703155.

    Google Scholar 

  32. Wang, S. T.; Yang, Y.; Dong, Y. H.; Zhang, Z. T.; Tang, Z. L. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 2019, 8, 1–18.

    Google Scholar 

  33. Niu, Y. B.; Yin, Y. X.; Guo, Y. G. Nonaqueous sodium-ion full cells: Status, strategies, and prospects. Small 2019, 15, 1900233.

    Google Scholar 

  34. Yang, Z.; Huang, Q.; Li, S. J.; Mao, J. High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries. J. Alloys Compd. 2018, 753, 192–202.

    CAS  Google Scholar 

  35. Ma, S.; Jiang, M. D.; Tao, P.; Song, C. Y.; Wu, J. B.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666.

    CAS  Google Scholar 

  36. Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

    Google Scholar 

  37. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    CAS  Google Scholar 

  38. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    CAS  Google Scholar 

  39. Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.

    CAS  Google Scholar 

  40. Zhang, J. X.; Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184.

    CAS  Google Scholar 

  41. Gao, H. C.; Zhou, W. D.; Park, K.; Goodenough, J. B. A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv. Energy Mater. 2016, 6, 1600467.

    Google Scholar 

  42. Chao, D. L.; Lai, C. H.; Liang, P.; Wei, Q. L.; Wang, Y. S.; Zhu, C. R.; Deng, G.; Doan-Nguyen, V. V. T.; Lin, J. Y.; Mai, L. Q. et al. Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 2018, 8, 1800058.

    Google Scholar 

  43. Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

    Google Scholar 

  44. Ren, W. H.; Zheng, Z. P.; Xu, C.; Niu, C. J.; Wei, Q. L.; An, Q. Y.; Zhao, K. N.; Yan, M. Y.; Qin, M. S.; Mai, L. Q. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153.

    CAS  Google Scholar 

  45. Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) Co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.

    Google Scholar 

  46. Zhang, J. J.; Wen, H. J.; Yue, L. P.; Chai, J. C.; Ma, J.; Hu, P.; Ding, G. L.; Wang, Q. F.; Liu, Z. H.; Cui, G. L. et al. In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small 2017, 13, 1601530.

    Google Scholar 

  47. Wang, Y. S.; Xiao, R. J.; Hu, Y. S.; Avdeev, M.; Chen, L. Q. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.

    CAS  Google Scholar 

  48. Zhang, B.; Rousse, G.; Foix, D.; Dugas, R.; Corte, D. A. D.; Tarascon, J. M. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 2016, 28, 9824–9830.

    CAS  Google Scholar 

  49. Xiao, Y.; Zhu, Y. F.; Yao, H. R.; Wang, P. F.; Zhang, X. D.; Li, H. L.; Yang, X. A.; Gu, L.; Li, Y. C.; Wang, T. et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978.

    Google Scholar 

  50. Ni, Q.; Dong, R. Q.; Bai, Y.; Wang, Z. H.; Ren, H. X.; Sean, S.; Wu, F.; Xu, H. J.; Wu, C. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Stor. Mater. 2020, 25, 903–911.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872334 and 51932011), and the Innovation-Driven Project of Central South University (No. 2020CX024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxin Cao, Jiang Zhou or Shuquan Liang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Cao, X., Zhou, Y. et al. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 13, 3330–3337 (2020). https://doi.org/10.1007/s12274-020-3011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3011-6

Keywords

Navigation