Skip to main content
Log in

Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The synergistic therapy of chemotherapy and photothermal therapy (PTT) has been reported as a promising antitumor strategy. To achieve effective combination therapy, developing more suitable candidate nanomaterials with optimal photothermal property and high chemical drug loading capacity is very necessary. Herein, a bimetallic PtPd nanoparticle was synthesized with the merits of excellent photothermal effect and mesoporous structure for doxorubicin (DOX) loading. We further designed PtPd-ethylene glycol (PEG)-folic acid (FA)-doxorubicin (DOX) nanoparticle for chemo-photothermal therapy of MCF-7 tumor with folic acid engineering to achieve active targeting. Moreover, excellent photoacoustic (PA) imaging of PtPd-PEG-FA-DOX nanoparticles facilitated the precise in vivo tracking and further evaluation of nanoparticles’ targeting effect. The in vitro and in vivo results both demonstrated PtPd-PEG-FA-DOX nanoparticles serve as a safe and promising system for effective treatment of MCF-7 tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin.2011, 61, 69–90.

    Article  Google Scholar 

  2. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell2011, 144, 646–674.

    Article  CAS  Google Scholar 

  3. Duan, X.; Yang, X.; Dai, C. L.; Tong, T.; Miao, C. X.; Zheng, J. P. One-pot synthesis of camptothecin-loaded glutathione-responsive PEGlyation nanogels as novel antitumor therapeutics. Mater. Express2019, 9, 757–763.

    Article  CAS  Google Scholar 

  4. He, Q. J.; Guo, S. R.; Qian, Z. Y.; Chen, X. Y. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev.2015, 44, 6258–6286.

    Article  CAS  Google Scholar 

  5. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano2009, 3, 16–20.

    Article  CAS  Google Scholar 

  6. Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials2011, 32, 7127–7138.

    Article  CAS  Google Scholar 

  7. Melancon, M. P.; Zhou, M.; Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res.2011, 44, 947–956.

    Article  CAS  Google Scholar 

  8. Cheng, B.; He, H.; Huang, T.; Berr, S. S.; He, J.; Fan, D.; Zhang, J.; Xu, P. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy. J. Biomed. Nanotechnol.2016, 12, 435–449.

    Article  CAS  Google Scholar 

  9. Gu, Z. J.; Yan, L.; Tian, G.; Li, S. J.; Chai, Z. F.; Zhao, Y. L. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater.2013, 25, 3758–3779.

    Article  CAS  Google Scholar 

  10. Li, J. W.; Lyv, Z. L.; Li, Y. L.; Liu, H.; Wang, J. K.; Zhan, W. J.; Chen, H.; Chen, H. B.; Li, X. M. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials2015, 51, 12–21.

    Article  CAS  Google Scholar 

  11. Sun, X. L.; Cai, W. B.; Chen, X. Y. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res.2015, 48, 286–294.

    Article  CAS  Google Scholar 

  12. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev.2014, 43, 6254–6287.

    Article  CAS  Google Scholar 

  13. Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater.2015, 27, 903–910.

    Article  CAS  Google Scholar 

  14. Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev.2015, 115, 10637–10689.

    Article  CAS  Google Scholar 

  15. Jabeen, F.; Najam-ul-Haq, M.; Javeed, R.; Huck, C. W.; Bonn, G. K. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules2014, 19, 20580–20593.

    Article  CAS  Google Scholar 

  16. Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal. Chem.2008, 391, 2469–2495.

    Article  CAS  Google Scholar 

  17. Xiang, H. F.; Cheng, J. H.; Ma, X. F.; Zhou, X. G.; Chruma, J. J. Near-infrared phosphorescence: Materials and applications. Chem. Soc. Rev.2013, 42, 6128–6185.

    Article  CAS  Google Scholar 

  18. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004, 104, 293–346.

    Article  CAS  Google Scholar 

  19. Zhao, L. L.; Choi, J.; Lu, Y.; Kim, S. Y. Targeted photodynamic therapy activities of surface-enhanced raman scattering-active theranostic system based on folate/hyaluronic acid-fonctionalized gold nanochains. J. Biomed. Nanotechnol.2019, 15, 544–554.

    Article  CAS  Google Scholar 

  20. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett.2005, 5, 667–673.

    Article  CAS  Google Scholar 

  21. Tang, S. C.; Chen, M.; Zheng, N. F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small2014, 10, 3139–3144.

    Article  CAS  Google Scholar 

  22. Xiao, J. W.; Fan, S. X.; Wang, F.; Sun, L. D.; Zheng, X. Y.; Yan, C. H. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale2014, 6, 4345–4351.

    Article  CAS  Google Scholar 

  23. Chen, H.; Lin, W. Y.; Yuan, L. Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells. Org. Biomol. Chem.2013, 11, 1938–1941.

    Article  CAS  Google Scholar 

  24. Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale2014, 6, 1271–1276.

    Article  CAS  Google Scholar 

  25. Tang, S. H.; Chen, M.; Zheng, N. F. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res.2015, 8, 165–174.

    Article  CAS  Google Scholar 

  26. Alayoglu, S.; Zavalij, P.; Eichhorn, B.; Wang, Q.; Frenkel, A. I.; Chupas, P. Structural and architectural evaluation of bimetallic nanoparticles: A case study of Pt-Ru core-shell and alloy nanoparticles. ACS Nano2009, 3, 3127–3137.

    Article  CAS  Google Scholar 

  27. Chen, L. Y.; Chen, N.; Hou, Y.; Wang, Z. C.; Lv, S. H.; Fujita, T.; Jiang, J. H.; Hirata, A.; Chen, M. W. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal.2013, 3, 1220–1230.

    Article  CAS  Google Scholar 

  28. Fan, N. N.; Yang, Y.; Wang, W. F.; Zhang, L. J.; Chen, W.; Zou, C.; Huang, S. M. Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano2012, 6, 4072–4082.

    Article  CAS  Google Scholar 

  29. Wang, S. Y.; Jiang, S. P.; White, T. J.; Guo, J.; Wang, X. Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells. J. Phys. Chem. C2009, 113, 18935–18945.

    Article  CAS  Google Scholar 

  30. Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials2000, 21, 2475–2490.

    Article  CAS  Google Scholar 

  31. Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metalmesoporous nanocolloids: Solution-phase synthesis of core-shellPd@Pt nanoparticles with a designed concave surface. Angew. Chem., Int. Ed.2013, 52, 13611–13615.

    Article  CAS  Google Scholar 

  32. Fischer, H. C.; Chan, W. C. W. Nanotoxicity: The growing need for in vivo study. Curr. Opin. Biotechnol.2007, 18, 565–571.

    Article  CAS  Google Scholar 

  33. Wang, Y. Z.; Song, Y. J.; Zhu, G. X.; Zhang, D. C.; Liu, X. W. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chin. Chem. Lett.2018, 29, 1685–1688.

    Article  CAS  Google Scholar 

  34. Ruan, S. B.; Hu, C.; Tang, X.; Cun, X. L.; Xiao, W.; Shi, K. R.; He, Q.; Gao, H. L. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano2016, 10, 10086–10098.

    Article  CAS  Google Scholar 

  35. Li, Y. N.; Zhang, H. Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J. Biomed. Nanotechnol.2019, 15, 1–27.

    Article  CAS  Google Scholar 

  36. Li, W. T.; Peng, J. R.; Tan, L. W.; Wu, J.; Shi, K.; Qu, Y.; Wei, X. W.; Qian, Z. Y. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials2016, 106, 119–133.

    Article  CAS  Google Scholar 

  37. Yu, Z. H.; Guo, Y. C.; Dai, H.; Zeng, B. F.; Zheng, X.; Yi, C. X.; Jiang, N.; Liu, Y.; Huang, X. On-demand drug release and re-absorption from pirarubicin loaded Fe3O4@ZnO core-shell nanoparticles for targeting infusion chemotherapy for urethral carcinoma. Mater. Express2019, 9, 467–474.

    Article  CAS  Google Scholar 

  38. Hao, Y.; Dong, M. L.; Zhang, T. Y.; Peng, J. R.; Jia, Y. P.; Cao, Y. P.; Qian, Z. Y. Novel approach of using near-infrared responsive PEGylated gold nanorod coated poly(L-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces2017, 9, 15317–15327.

    Article  CAS  Google Scholar 

  39. Liu, R.; Hu, C.; Yang, Y. Y.; Zhang, J. Q.; Gao H. L. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B2019, 9, 410–420.

    Article  Google Scholar 

  40. Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano2015, 9, 6–11.

    Article  CAS  Google Scholar 

  41. Li, J. L.; Gu, M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials2010, 31, 9492–9498.

    Article  CAS  Google Scholar 

  42. Pustovalov, V. K.; Smetannikov, A. S.; Zharov, V. P. Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticlesand laser pulses. Laser Phys. Lett.2008, 5, 775–792.

    Article  CAS  Google Scholar 

  43. Tang, X. C.; Tan, L. W.; Shi, K.; Peng, J. R.; Xiao, Y.; Li, W. T.; Chen, L. J.; Yang, Q.; Qian, Z. Y. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm. Sin. B2018, 8, 587–601.

    Article  Google Scholar 

  44. Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng J. X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater.2007, 19, 3136–3141.

    Article  CAS  Google Scholar 

  45. Tong, L.; Cheng, J. X. Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria. Nanomedicine2009, 4, 265–276.

    Article  CAS  Google Scholar 

  46. O’Neill, K. L.; Fairbairn, D. W.; Smith M. J.; Poe, B. S. Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell lines. Apoptosis1998, 3, 369–375.

    Article  Google Scholar 

  47. Link, S.; El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.2000, 19, 409–453.

    Article  CAS  Google Scholar 

  48. Peng, J. R.; Qi, T. T.; Liao, J. F.; Chu, B. Y.; Yang, Q.; Qu, Y.; Li, W. T.; Li, H.; Luo, F.; Qian, Z. Y. Mesoporous magnetic gold “nanoclusters” as theranostic carrier for chemo-photothermal co-therapy of breast cancer. Theranostics2014, 4, 678–692.

    Article  CAS  Google Scholar 

  49. Guo, L. L.; Chen, H.; He, N. Y.; Deng, Y. Effects of surface modifications on the physicochemical properties of iron oxide nanoparticles and their performance as anticancer drug carriers. Chin. Chem. Lett.2018, 29, 1829–1833.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the help of Dr. Shanling Wang from Analytical & Testing Center in Sichuan University for TEM analysis of our nanoparticles. This work was financially supported by the National Natural Science Foundation of China (Nos. 31930067, 31525009, 31800797, and 31771096), the National Key Research and Development Program of China (Nos. 2017YFC1103502 and 2016YFA0201402), the China Postdoctoral Science Foundation funded project (No. 2018M631094), the Postdoctoral Innovation Talents Support Program (No. BX20180207), and 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (No. ZYGD18002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Li, Yuehe Lin or Zhiyong Qian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Song, Y., Qu, Y. et al. Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer. Nano Res. 13, 1739–1748 (2020). https://doi.org/10.1007/s12274-020-2800-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2800-2

Keywords

Navigation