Skip to main content
Log in

Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As the proportion of interfaces increases rapidly in nanomaterials, properties and quality of interfaces hugely impact the performance of advanced semiconductors. Here, the effect of interfaces is explored by comparatively studying two InAs/AlSb superlattices with and without the thin InAsSb layers inserted inside each InAs layers. Through strain mapping, it indicates that the addition of interfaces leads to an increase of local strain both near interfaces and inside layers. Meantime, owing to the creation of hole potential wells within the original electron wells, the charge distribution undergoes an extra electron-hole alternating arrangement in the structure with inserted layers than the uninserted counterpart. Such a feature is verified to enhance electron-hole wave function overlap by theoretical simulations, which is a must for better optical performance. Furthermore, with an elaborate design of the inserted layers, the wave function overlap could be boosted without sacrificing other key device performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.2009, 8, 543–557.

    Article  CAS  Google Scholar 

  2. Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater.2016, 15, 141–153.

    Article  CAS  Google Scholar 

  3. Cao, S. W.; Yu, J. G. Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C2016, 27, 72–99.

    Article  CAS  Google Scholar 

  4. Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater.2013, 25, 6158–6183.

    Article  CAS  Google Scholar 

  5. El-Ballouli, A. O.; Alarousu, E.; Bernardi, M.; Aly, S. M.; Lagrow, A. P.; Bakr, O. M.; Mohammed, O. F. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J. Am. Chem. Soc.2014, 136, 6952–6959.

    Article  CAS  Google Scholar 

  6. Yang, H. H.; Fan, W. G.; Vaneski, A.; Susha, A. S.; Teoh, W. Y.; Rogach, A. L. Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: Intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater.2012, 22, 2821–2829.

    Article  CAS  Google Scholar 

  7. Wei, Y. J.; Hood, A.; Yau, H.; Gin, A.; Razeghi, M.; Tidrow, M. Z.; Nathan, V. Uncooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infrared range. Appl. Phys. Lett.2005, 86, 233106.

    Article  Google Scholar 

  8. Jiao, S.; Shen, Q.; Mora-Seró, I.; Wang, J.; Pan, Z. X.; Zhao, K.; Kuga, Y.; Zhong, X. H.; Bisquert, J. Band engineering in core/shell ZnTe/CdSe For photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano2015, 9, 908–915.

    Article  CAS  Google Scholar 

  9. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature2017, 546, 270–273.

    Article  CAS  Google Scholar 

  10. Choi, W. B.; Bae, E.; Kang, D. K.; Chae, S.; Cheong, B. H.; Ko, J. H.; Lee, E.; Park, W. J. Aligned carbon nanotubes for nanoelectronics. Nanotechnology2004, 15, S512–S516.

    Article  CAS  Google Scholar 

  11. Kim, H.; Meng, Y. F.; Klem, J. F.; Hawkins, S. D.; Kim, J. K.; Zuo, J. M. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb. J. Appl. Phys.2018, 123, 161521.

    Article  Google Scholar 

  12. Wu, B.; Fu, K. W.; Yantara, N.; Xing, G. C.; Sun, S. Y.; Sum, T. C.; Mathews, N. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv. Energy Mater.2015, 5, 1500829.

    Article  Google Scholar 

  13. Li, X.; Yu, J. G.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A2015, 3, 2485–2534.

    Article  CAS  Google Scholar 

  14. Meng, C.; Ling, T.; Ma, T. Y.; Wang, H.; Hu, Z. P.; Zhou, Y.; Mao, J.; Du, X. W.; Jaroniec, M.; Qiao, S. Z. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater.2017, 29, 1604607.

    Article  Google Scholar 

  15. Park, Y. S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett.2015, 15, 7319–7328.

    Article  CAS  Google Scholar 

  16. Cai, C. Y.; Zhao, Y. H.; Xie, S. W.; Zhao, X. B.; Zhang, Y.; Xu, Y. Q.; Liang, C. Y.; Niu, Z. C.; Shi, Y.; Li, Y. S. et al. Heterointerface-driven band alignment engineering and its impact on macro-performance in semiconductor multilayer nanostructures. Small2019, 15, 1900837.

    Article  Google Scholar 

  17. Lu, J.; Luna, E.; Aoki, T.; Steenbergen, E. H.; Zhang, Y. H.; Smith, D. J. Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy. J. Appl. Phys.2016, 119, 095702.

    Article  Google Scholar 

  18. Wang, Y. Q.; Wang, Z. L.; Brown, T.; Brown, A.; May, G. Thermodynamic analysis of anion exchange during heteroepitaxy. J. Cryst. Growth2002, 242, 5–14.

    Article  CAS  Google Scholar 

  19. Bi, H.; Han, X.; Liu, L.; Zhao, Y. H.; Zhao, X. B.; Wang, G. W.; Xu, Y. Q.; Niu, Z. C.; Shi, Y.; Che, R. C. Atomic mechanism of interfacial-controlled quantum efficiency and charge migration in InAs/GaSb superlattice. ACS Appl. Mater. Interfaces2017, 9, 26642–26647.

    Article  CAS  Google Scholar 

  20. Nicolaï, J.; Warot-Fonrose, B.; Gatel, C.; Teissier, R.; Baranov, A. N.; Magen, C.; Ponchet, A. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers. J. Appl. Phys.2015, 118, 035305.

    Article  Google Scholar 

  21. Chen, Z. W.; Jian, Z. Z.; Li, W.; Chang, Y. J.; Ge, B. H.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M. X.; Snyder, G. J. et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater.2017, 29, 1606768.

    Article  Google Scholar 

  22. Yao, Y.; Li, C.; Huo, Z. L.; Liu, M.; Zhu, C. X.; Gu, C. Z.; Duan, X. F.; Wang, Y. G.; Gu, L.; Yu, R. C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun.2013, 4, 2764.

    Article  CAS  Google Scholar 

  23. Chang, Y. C.; Schulman, J. N. Interband optical transitions in GaAs-Ga1-xAlxAs and InAs-GaSb superlattices. Phys. Rev. B1985, 31, 2069–2079.

    Article  CAS  Google Scholar 

  24. Kroemer, H. The 6.1Å family (InAs, GaSb, AlSb) and its heterostructures: A selective review. Phys. E2004, 20, 196–203.

    Article  CAS  Google Scholar 

  25. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy1998, 74, 131–146.

    Article  Google Scholar 

  26. Mahalingam, K.; Haugan, H. J.; Brown, G. J.; Eyink, K. G. Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM. Ultramicroscopy2013, 127, 70–75.

    Article  CAS  Google Scholar 

  27. Haugan, H. J.; Brown, G. J.; Elhamri, S.; Mitchel, W. C.; Mahalingam, K.; Kim, M.; Noe, G. T.; Ogden, N. E.; Kono, J. Impact of growth temperature on InAs/GaInSb strained layer superlattices for very long wavelength infrared detection. Appl. Phys. Lett.2012, 101, 171105.

    Article  Google Scholar 

  28. Ting, D. Z. Y.; Soibel, A.; Höglund, L.; Nguyen, J.; Hill, C. J.; Khoshakhlagh, A.; Gunapala, S. D. Type-II superlattice infrared detectors. Semicond. Semimet.2011, 84, 1–57.

    Article  CAS  Google Scholar 

  29. Gardner, G. C.; Fallahi, S.; Watson, J. D.; Manfra, M. J. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility > 35×106 cm2/V s in AlGaAs/GaAs quantum wells grown by MBE. J. Cryst. Growth2016, 441, 71–77.

    Article  CAS  Google Scholar 

  30. Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2 /V s. J. Cryst. Growth2009, 311, 1658–1661.

    Article  CAS  Google Scholar 

  31. Mahalingam, K.; Haugan, H. J.; Brown, G. J.; Aronow, A. J. Strain analysis of compositionally tailored interfaces in InAs/GaSb superlattices. Appl. Phys. Lett.2013, 103, 211605.

    Article  Google Scholar 

  32. Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y. H.; Johnson, S. R. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Appl. Phys. Lett.2015, 106, 061907.

    Article  Google Scholar 

  33. Ishida, A.; Naruse, K.; Nakashima, S.; Takano, Y.; Du, S. Q.; Hirakawa, K. Interband absorption in PbTe/PbSnTe-based type-II superlattices. Appl. Phys. Lett.2018, 113, 072103.

    Article  Google Scholar 

  34. Steenbergen, E. H.; Connelly, B. C.; Metcalfe, G. D.; Shen, H.; Wraback, M.; Lubyshev, D.; Qiu, Y.; Fastenau, J. M.; Liu, A. W. K.; Elhamri, S. et al. Temperature-dependent minority carrier lifetimes of InAs/InAs1−xSbx type-II superlattices. In Proceedings of 8512, Infrared Sensors, Devices, and Applications II, San Diego, California, USA, 2012.

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2018YFA0209102) and the National Natural Science Foundation of China (Nos. 11727807, 51725101, 51672050, and 61790581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Electronic Supplementary Material

12274_2020_2764_MOESM1_ESM.pdf

Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Zhao, Y., Chang, F. et al. Understanding the role of interface in advanced semiconductor nanostructure and its interplay with wave function overlap. Nano Res. 13, 1536–1543 (2020). https://doi.org/10.1007/s12274-020-2764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2764-2

Keywords

Navigation