Skip to main content
Log in

Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The modification of amyloid fibrils cytotoxicity through exogenous nanomaterials is crucial to understand the processes controlling the role of protein aggregation in the related diseases. The influence of nanoparticles on amyloid stability yields great interest due to the small size and high surface area-to-volume ratio of nanoparticles. Various physico-chemical parameters play a role in the interaction of proteins and nanoparticles in solution, thus influencing the disaggregation of preformed fibrils. We have examined the influence of two kinds of metallic nanoparticles on lysozyme amyloid fibrils using a multi-technique approach and focalized their impact on cytotoxicity on human neuroblastoma cells (SH-SY5Y). In particular, fluorescence, infrared and circular dichroism spectroscopies, optical and atomic force microscopy experiments have been carried out; the results are analyzed to rationalize the effects of these complexes on neural cell viability. It is remarkable, that the fibrils in the presence of AuNPs, unlike fibrils alone or with AgNPs, do not generate a significant cytotoxic effect even at high concentration and an amyloid degradation effect is visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, M. R. K.; Wu, Y.; El-Sayed, M. A. Gold-nanoparticle-assisted plasmonicphotothermal therapy advances toward clinical application. J. Phys. Chem. C2019, 123, 15375–15393.

    CAS  Google Scholar 

  2. Latterini, L.; Tarpani, L. Hierarchical assembly of nanostructures to decouple fluorescence and photothermal effect. J. Phys. Chem. C2011, 115, 21098–21104.

    CAS  Google Scholar 

  3. Lynch, I.; Dawson, K. A. Protein-nanoparticle interaction. Nano Today2008, 3, 40–47.

    CAS  Google Scholar 

  4. Alkilany, A. M.; Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res.2010, 12, 2313–2333.

    CAS  Google Scholar 

  5. Bertoli, F.; Garry, D.; Monopoli, M. P.; Salvati, A.; Dawson, K. A. The intracellular destiny of the protein corona: A study on its cellular internalization and evolution. ACS Nano2016, 10, 10471–10479.

    CAS  Google Scholar 

  6. Barbalinardo, M.; Caicci, F.; Cavallini, M.; Gentili, D. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small2018, 14, 1801219.

    Google Scholar 

  7. Satzer, P.; Svec, F.; Sekot, G.; Jungbauer, A. Protein adsorption onto nanoparticles induces conformational changes: Particle size dependency, kinetics, and mechanisms. Eng. Life Sci.2016, 16, 238–246.

    CAS  Google Scholar 

  8. Gambucci, Tarpani, L.; Zampini, G.; Massaro, G.; Nocchetti, M.; Sassi, P.; Latterini, L. Fluorimetric studies of a transmembrane protein and its interactions with differently functionalized silver nanoparticles. J. Phys. Chem. B2018, 122, 6872–6879.

    Google Scholar 

  9. Tarpani, L.; Bellezza, F.; Sassi, P.; Gambucci, M.; Cipiciani, A.; Latterini, L. New insights into the effects of surface functionalization on the peroxidase activity of cytochrome c adsorbed on silica nanoparticles. J. Phys. Chem. B2019, 123, 2567–2575.

    CAS  Google Scholar 

  10. Gambucci, M.; Gentili, P. L.; Sassi, P.; Latterini, L. A multispectroscopic approach to investigate the interactions between Gramicidin A and silver nanoparticles. Soft Matter2019, 15, 6571–6580.

    CAS  Google Scholar 

  11. Ban, D. K.; Paul, S. Functionalized gold and silver nanoparticles modulate amyloid fibrillation, defibrillation and cytotoxicity of lysozyme via altering protein surface character. Appl. Surf. Sci.2019, 473, 373–385.

    Google Scholar 

  12. Arbor, S. C.; LaFontaine, M.; Cumbay, M. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores. Yale J. Biol. Med.2016, 89, 5–21.

    CAS  Google Scholar 

  13. Dobson, C. M. Protein folding and misfolding. Nature2003, 426, 884–890.

    CAS  Google Scholar 

  14. Kruis, F. E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review. J. Aerosol Sci.1998, 29, 511–535.

    CAS  Google Scholar 

  15. Bogart, L. K.; Pourroy, G.; Murphy, C. J.; Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano2014, 8, 3107–3122.

    CAS  Google Scholar 

  16. Mossuto, M. F.; Dhulesia, A.; Devlin, G.; Frare, E.; Kumita, J. R.; de Laureto, P. P.; Dumoulin, M.; Fontana, A.; Dobson, C. M.; Salvatella, X. The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J. Mol. Biol.2010, 402, 783–796.

    CAS  Google Scholar 

  17. Zaman, M.; Ahmad, E.; Qadeer, A.; Rabbani, G.; Khan, R. H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine2014, 9, 899–912.

    Google Scholar 

  18. Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science2003, 300, 486–489.

    CAS  Google Scholar 

  19. Dobson, C. M.; Evans, P. A.; Radford, S. E. Understanding how proteins fold: The lysozyme story so far. Trends Biochem. Sci.1994, 19, 31–37.

    CAS  Google Scholar 

  20. Gillmore, J. D.; Booth, D. R.; Madhoo, S.; Pepys, M. B.; Hawkins, P. N. Hereditary renal amyloidosis associated with variant lysozyme in a large English family. Nephrol. Dial. Transplant.1999, 14, 2639–2644.

    CAS  Google Scholar 

  21. Tarpani, L.; Latterini, L. Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO2 nanoparticles. J. Luminesc.2017, 185, 192–199.

    CAS  Google Scholar 

  22. McAllister, C.; Karymov, M. A.; Kawano, Y.; Lushnikov, A. Y.; Mikheikin, A.; Uversky, V. N.; Lyubchenko, Y. L. Protein interactions and misfolding analyzed by AFM force spectroscopy. J. Mol. Biol.2005, 354, 1028–1042.

    CAS  Google Scholar 

  23. Novo, M.; Freire, S.; Al-Soufi, W. Critical aggregation concentration for the formation of early Amyloid-ß (1-42) oligomers. Sci. Rep.2018, 8, 1783.

    Google Scholar 

  24. Zhao, R.; So, M.; Maat, H.; Ray, N. J.; Arisaka, F.; Goto, Y.; Carver, J. A.; Hall, D. Measurement of amyloid formation by turbidity assay-seeing through the cloud. Biophys. Rev.2016, 8, 445–471.

    CAS  Google Scholar 

  25. Adamcik, J.; Mezzenga, R. Study of amyloid fibrils via atomic force microscopy. Curr. Opin. Colloid Interface Sci.2012, 17, 369–376.

    CAS  Google Scholar 

  26. Boutet, S.; Lomb, L.; Williams, G. J.; Barends, T. R. M.; Aquila, A.; Doak, R. B.; Weierstall, U.; DePonte, D. P.; Steinbrener, J.; Shoeman, R. L. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science2012, 337, 362–364.

    CAS  Google Scholar 

  27. Giugliarelli, A.; Tarpani, L.; Latterini, L.; Morresi, A.; Paolantoni, M.; Sassi, P. Spectroscopic and microscopic studies of aggregation and fibrillation of lysozyme in water/ethanol solutions. J. Phys. Chem. B2015, 119, 13009–13017.

    CAS  Google Scholar 

  28. Antosova, A.; Bednarikova, Z.; Koneracka, M.; Antal, I.; Marek, J.; Kubovcikova, M.; Zavisova, V.; Jurikova, A.; Gazova, Z. Aminoacid functionalized superparamagnetic nanoparticles inhibit lysozyme amyloid fibrillization. Chem. — Eur. J.2019, 25, 7501–7514.

    CAS  Google Scholar 

  29. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc.2006, 1, 2876–2890.

    CAS  Google Scholar 

  30. Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y. H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA2015, 112, E3095–E3103.

    CAS  Google Scholar 

  31. Brudar, S.; Hribar-Lee, B. The role of buffers inwild-type HEWLamyloid fibril formation mechanism. Biomolecules2019, 9, 65.

    Google Scholar 

  32. Nerelius, C.; Sandegren, A.; Sargsyan, H.; Raunak, R.; Leijonmarck, H.; Chatterjee, U.; Fisahn, A.; Imarisio, S.; Lomas, D. A.; Crowther, D. C. et al. a-helix targeting reduces amyloid-ß peptide toxicity. Proc. Natl. Acad. Sci. USA2009, 106, 9191–9196.

    CAS  Google Scholar 

  33. Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem.1986, 38, 181–364.

    CAS  Google Scholar 

  34. Leeson, D. T.; Gai, F.; Rodriguez, H. M.; Gregoret, L. M.; Dyer, R. B. Protein folding and unfolding on a complex energy landscape. Proc. Natl. Acad. Sci. USA2000, 97, 2527–2532.

    CAS  Google Scholar 

  35. Giugliarelli, A.; Sassi, P.; Paolantoni, M.; Onori, G.; Cametti, C. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements. J. Phys. Chem. B2012, 116, 10779–10785.

    CAS  Google Scholar 

  36. Moran, S. D.; Zanni, M. T. How to get insight into amyloid structure and formation from infrared spectroscopy. J. Phys. Chem. Lett.2014, 5, 1984–1993.

    CAS  Google Scholar 

  37. Vesaratchanon, S.; Nikolov, A.; Wasan, D. T. Sedimentation in nanocolloidal dispersions: Effects of collective interactions and particle charge. Adv. Colloid Interface Sci.2007, 134-135, 268–278.

    CAS  Google Scholar 

  38. Bystrenova, E.; Bednarikova, Z.; Barbalinardo, M.; Albonetti, C.; Valle, F.; Gazova, Z. Amyloid fragments and their toxicity on neural cells. Regen. Biomater.2019, 6, 121–127.

    CAS  Google Scholar 

  39. Hefendehl, J. K.; Wegenast-Braun, B. M.; Liebig, C.; Eicke, D.; Milford, D.; Calhoun, M. E.; Kohsaka, S.; Eichner, M.; Jucker, M. Long-term in vivo imaging of ß-amyloid plaque appearance and growth in a mouse model of cerebral ß-amyloidosis. J. Neurosci.2011, 31, 624–629.

    CAS  Google Scholar 

  40. Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys.2012, 10, 181–188.

    Google Scholar 

  41. Kelly, J. G.; Hawken, M. J. Quantification of neuronal density across cortical depth using automated 3D analysis of confocal image stacks. Brain Struct. Funct.2017, 222, 3333–3353.

    Google Scholar 

  42. Twentyman, P. R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer1987, 56, 279–285.

    CAS  Google Scholar 

  43. Barbalinardo, M.; Gentili, D.; Lazzarotto, F.; Valle, F.; Brucale, M.; Melucci, M.; Favaretto, L.; Zambianchi, M.; Borrachero- Conejo, A. I.; Saracino, E. et al. Data-matrix technology for multiparameter monitoring of cell cultures. Small Methods2018, 2, 1700377.

    Google Scholar 

  44. Rasband, W.S. USNational Institutes of Health, Bethesda, Maryland, USA[Online]. https://imagej.nih.gov/ij/.1997-2016.

  45. Krebs, M. R. H.; Bromley, E. H. C.; Donald, A. M. The binding of thioflavin-T to amyloid fibrils: Localisationand implications. J. Struct. Biol.2005, 149, 30–37.

    CAS  Google Scholar 

  46. Linse, S.; Cabaleiro-Lago, C.; Xue, W. F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S. E.; Dawson, K. A. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA2007, 104, 8691–8696.

    CAS  Google Scholar 

  47. Lopez-Tobar, E.; Antalik, M.; Jancura, D.; Cañamares, M. V.; García-Leis, A.; Fedunova, D.; Fabriciova, G.; Sanchez-Cortes, S. Adsorption and detection of amyloid marker thioflavin t on Ag nanoparticles by surface-enhanced Raman scattering. J. Phys. Chem. C2013, 117, 3996–4005.

    CAS  Google Scholar 

  48. Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M. P.; Sheibani, S.; Vali, H.; Dawson, K. A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid ß protein fibrillation in solution. ACS Chem. Neurosci.2013, 4, 475–485.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Slovak grand agency VEGA 2/0145/17, APVV-18-0284, Italian flagship NANOMAX, N-CHEM, Ministery of Education, University and Research (PRIN grant 20173L7W8K). Microscopy was carried out at the SPM@ISMN facility.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Loredana Latterini or Eva Bystrenova.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbalinardo, M., Antosova, A., Gambucci, M. et al. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Res. 13, 1081–1089 (2020). https://doi.org/10.1007/s12274-020-2748-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2748-2

Keywords

Navigation