Skip to main content
Log in

Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electroreduction of CO2 to valuable chemicals and fuels offers an effective mean for energy storage. Although CO2 has been efficiently converted into C1 products (e.g., carbon monoxide, formic acid, methane and methanol), its convention into high value-added multicarbon hydrocarbons with high selectivity and activity still remains challenging. Here we demonstrate the formation of multi-shelled CuO microboxes for the efficient and selective electrocatalytic CO2 reduction to C2H4. Such a structure favors the accessibility of catalytically active sites, improves adsorption of reaction intermediate (CO), inhibits the diffusion of produced OH and promotes C—C coupling reaction. Owing to these unique advantages, the multi-shelled CuO microboxes can effectively convert CO2 into C2H4 with a maximum faradaic efficiency of 51.3% in 0.1 M K2SO4. This work provides an effective way to improve CO2 reduction efficiency via constructing micro- and nanostructures of electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci.2017, 4, 1700194.

    Google Scholar 

  2. Yu, X. X.; Yang, Z. Z.; Qiu, B.; Guo, S. E.; Yang, P.; Yu, B.; Zhang, H. Y.; Zhao, Y. F.; Yang, X. Z.; Han, B. X. et al. Eosin Y-functionalized conjugated organic polymers for visible-light-driven CO2 reduction with H2O to CO with high efficiency. Angew. Chem., Int. Ed.2019, 58, 632–636.

    CAS  Google Scholar 

  3. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy2018, 3, 140–147.

    CAS  Google Scholar 

  4. Tan, D. X.; Zhang, J. L.; Cheng, X. Y.; Tan, X. N.; Shi, J. B.; Zhang, B. X.; Han, B. X.; Zheng, L. R.; Zhang, J. CuxNiy alloy nanoparticles embedded in a nitrogen-carbon network for efficient conversion of carbon dioxide. Chem. Sci.2019, 10, 4491–4496.

    CAS  Google Scholar 

  5. Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci.2018, 5, 1700275.

    Google Scholar 

  6. Hursán, D.; Samu, A. A.; Janovák, L.; Artyushkova, K.; Asset, T.; Atanassov, P.; Janáky, C. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes. Joule2019, 3, 1719–1933.

    Google Scholar 

  7. Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater.2018, 8, 1801536.

    Google Scholar 

  8. Choi, Y. W.; Scholten, F.; Sinev, I.; Roldan Cuenya, B. Enhanced stability and CO/Formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction. J. Am. Chem. Soc.2019, 141, 5261–5266.

    CAS  Google Scholar 

  9. Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. S.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc.2017, 139, 4290–4293.

    CAS  Google Scholar 

  10. Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem.2019, 11, 222–228.

    CAS  Google Scholar 

  11. Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. R. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal.2019, 2, 55–61.

    CAS  Google Scholar 

  12. Tan, D. X.; Cui, C. N.; Shi, J. B.; Luo, Z. X.; Zhang, B. X.; Tan, X. N.; Han, B. X.; Zheng, L. R.; Zhang, J.; Zhang, J. L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res.2019, 12, 1167–1172.

    CAS  Google Scholar 

  13. Sun, X. F.; Chen, C. J.; Liu, S. J.; Hong, S.; Zhu, Q. G.; Qian, Q. L.; Han, B. X.; Zhang, J.; Zheng, L. R. Aqueous CO2 reduction with high efficiency using α-Co(OH)2-supported atomic Ir electrocatalysts. Angew. Chem., Int. Ed.2019, 58, 4669–4673.

    CAS  Google Scholar 

  14. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc.2017, 139, 8078–8081.

    CAS  Google Scholar 

  15. Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun.2019, 10, 2980.

    Google Scholar 

  16. Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem., Int. Ed.2018, 57, 14149–14153.

    CAS  Google Scholar 

  17. Yang, D. X.; Zhu, Q. G.; Chen, C. J.; Liu, H. Z.; Liu, Z. M.; Zhao, Z. J.; Zhang, X. Y.; Liu, S. J.; Han, B. X. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun.2019, 10, 677.

    CAS  Google Scholar 

  18. Mi, Y. Y.; Peng, X. Y.; Liu, X. J.; Luo, J. Selective formation of C2 products from electrochemical CO2 reduction over Cu1.8Se nanowires. ACS Appl. Energy Mater.2018, 1, 5119–5123.

    CAS  Google Scholar 

  19. Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc.2018, 140, 5791–5797.

    CAS  Google Scholar 

  20. Zhou, Y. S.; Che, F. J.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; de Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem.2018, 10, 974–980.

    CAS  Google Scholar 

  21. Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; de Luna, P.; Dinh, C. T.; Hu, Y. F. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun.2018, 9, 3828.

    Google Scholar 

  22. Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W. L.; Zhu, J. J.; Jiao, F. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater.2018, 30, 1803111.

    Google Scholar 

  23. Dinh, C. T.; Burdyny, T.; Kibria, M.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F.; Kiani, A.; Edwards, J. P.; de Luna, P.; Bushuyev, O. S. et al. CO2 Electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science2018, 360, 783–787.

    CAS  Google Scholar 

  24. Amaniampong, P. N.; Trinh, Q. T.; Wang, B.; Borgna, A.; Yang, Y. H.; Mushrif, S. H. Biomass oxidation: Formyl C—H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angew. Chem., Int. Ed.2015, 54, 8928–8933.

    CAS  Google Scholar 

  25. Dang, R.; Jia, X. L.; Liu, X.; Ma, H. T.; Gao, H. Y.; Wang, G. Controlled synthesis of hierarchical Cu nanosheets@CuO nanorods as high-performance anode material for lithium-ion batteries. Nano Energy2017, 33, 427–435.

    CAS  Google Scholar 

  26. Li, W.; Feng, X. L.; Zhang, Z.; Jin, X.; Liu, D. P.; Zhang, Y. A controllable surface etching strategy for well-defined spiny yolk@shell CuO@CeO2 cubes and their catalytic performance boost. Adv. Funct. Mater.2018, 28, 1802559.

    Google Scholar 

  27. Wang, F.; He, X. X.; Sun, L. M.; Chen, J. Q.; Wang, X. J.; Xu, J. H.; Han, X. G. Engineering an N-doped TiO2@N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A2018, 6, 2091–2099.

    CAS  Google Scholar 

  28. Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Zhao, X. S.; Diniz da Costa, J. C. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4. Chem. Commun.2015, 51, 9291–9293.

    CAS  Google Scholar 

  29. Kim, A. Y.; Kim, M. K.; Cho, K.; Woo, J.; Lee, Y.; Han, S. H.; Byun, D.; Choi, W.; Lee, J. K. One-step catalytic synthesis of CuO/Cu2O in a graphitized porous C matrix derived from the cu-based metal-organic framework for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces2016, 8, 19514–19523.

    CAS  Google Scholar 

  30. Groothaert, M. H.; van Bokhoven, J. A.; Battiston, A. A.; Weckhuysen, B. M.; Schoonheydt, R. A. Bis(μ—oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: A combined in situ XAFS, UV—Vis-near-IR, and kinetic study. J. Am. Chem. Soc.2003, 125, 7629–7640.

    CAS  Google Scholar 

  31. Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. F. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods2019, 3, 1800449.

    Google Scholar 

  32. Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc.2018, 140, 8681–8689.

    CAS  Google Scholar 

  33. de Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal.2018, 1, 103–110.

    CAS  Google Scholar 

  34. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature2016, 529, 68–71.

    CAS  Google Scholar 

  35. Tan, X. Y.; Yu, C.; Zhao, C. T.; Huang, H. W.; Yao, X. C.; Han, X. T.; Guo, W.; Cui, S.; Huang, H. L.; Qiu, J. S. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2. ACS Appl. Mater. Interfaces2019, 11, 9904–9910.

    CAS  Google Scholar 

  36. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc.2017, 139, 14889–14892.

    CAS  Google Scholar 

  37. Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun.2017, 8, 944.

    Google Scholar 

  38. Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed.2017, 56, 11326–11353.

    CAS  Google Scholar 

  39. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed.2016, 55, 6680–6684.

    CAS  Google Scholar 

  40. Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed.2017, 56, 796–800.

    CAS  Google Scholar 

  41. Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun.2019, 10, 32.

    CAS  Google Scholar 

  42. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C—C coupling from CO2 reduction reaction. J. Am. Chem. Soc.2019, 141, 4624–4633.

    CAS  Google Scholar 

  43. Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L. Y.; Panetti, G. B.; Yeo, B. S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C2016, 120, 20058–20067.

    CAS  Google Scholar 

  44. Guan, B. Y., Yu, L.; Lou, X. W. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed.2017, 56, 2386–2389.

    CAS  Google Scholar 

  45. Guan, B. Y.; Kushima, A.; Yu, L.; Li, S.; Li, J.; Lou, X. W. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater.2017, 29, 1605902.

    Google Scholar 

Download references

Acknowledgements

We thank the financial supports from Ministry of Science and Technology of China (No. 2017YFA0403003), the National Natural Science Foundation of China (Nos. 21525316 and 21673254), Chinese Academy of Sciences (No. QYZDY-SSW-SLH013) and Beijing Municipal Science & Technology Commission (No. Z191100007219009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianling Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Zhang, J., Yao, L. et al. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 13, 768–774 (2020). https://doi.org/10.1007/s12274-020-2692-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2692-1

Keywords

Navigation