Skip to main content
Log in

Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterostructures combined by different individual two-dimensional (2D) materials are essential building blocks to realize unique electronic, optoelectronic properties and multifunctional applications. To date, the direct growth of 2D/2D atomic van der Waals heterostructures (vdWHs) have been extensively investigated. However, the heterostructures from 2D inorganic molecular crystals and atomic crystals have been rarely reported. Here we report two-step direct epitaxial growth of the inorganic molecular-atomic Sb2O3/WS2 vdWHs. The thickness of Sb2O3 nanosheets on WS2 nanosheets can be tuned by variable growth temperatures. Oriented growth behavior of Sb2O3 on WS2 was determined through statistics. Optical images, Raman spectra, Raman mappings and selected-area electron diffraction (SAED), etc., reveal that Sb2O3/WS2 heterostructures are vertically stacked with high crystal quality. Electrical transport measurements demonstrate that the heterotransistors based on the heterostructures possess high current on/off ratio of 5 × 105, obvious gate-tunable and current rectification output characteristics. Optoelectronic characterizations show that the heterostructures have a clear photoresponse with high responsivity of 16.4 A/W. The growth of vdWHs from 2D inorganic molecular-atomic crystals may open up new opportunities in 2D functional electronics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  2. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.2012, 24, 2320–2325.

    CAS  Google Scholar 

  3. Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett.2016, 76, 5888–5894.

    Google Scholar 

  4. Liu, J. C.; Liu, X.; Chen, Z. J.; Miao, L. L.; Liu, X. Q.; Li, B.; Tang, L. M.; Chen, K. Q.; Liu, Y.; Li, J. B. et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res.2019, 72, 463–468.

    Google Scholar 

  5. Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater.2018, 28, 1802581.

    Google Scholar 

  6. Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc.2017, 139, 14976–14982.

    CAS  Google Scholar 

  7. Ismach, A.; Chou, H.; Mende, P.; Dolocan, A.; Addou, R.; Aloni, S.; Wallace, R.; Feenstra, R.; Ruoff, R. S.; Colombo, L. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater.2017, 4, 025117.

    Google Scholar 

  8. Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc.2018, 140, 14217–14223.

    CAS  Google Scholar 

  9. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater.2014, 2, 131–136.

    Google Scholar 

  10. Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater.2017, 29, 1702359.

    Google Scholar 

  11. Song, X. J.; Gao, J. F.; Nie, Y. F.; Gao, T.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Chen, Y. B.; Jin, C. H.; Bachmatiuk, A. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res.2015, 8, 3164–3176.

    CAS  Google Scholar 

  12. Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ-dielectrics. Adv. Mater.2015, 27, 5230–5234.

    CAS  Google Scholar 

  13. Park, W.; Kim, Y.; Jung, U.; Yang, J. H.; Cho, C.; Kim, Y. J.; Hasan, S. M. N.; Kim, H. G.; Lee, H. B. R.; Lee, B. H. Complementary unipolar WS2 field-effect transistors using fermi-level depinning layers. Adv. Electron. Mater.2016, 2, 1500278.

    Google Scholar 

  14. Tan, H. J.; Fan, Y.; Zhou, Y. Q.; Chen, Q.; Xu, W. S.; Warner, J. H. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano2016, 10, 7866–7873.

    CAS  Google Scholar 

  15. Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev.2018, 47, 6296–6341.

    CAS  Google Scholar 

  16. Wang, Y.; Jiang, L. X.; Liu, Y. K.; Tang, D.; Liu, F. Y.; Lai, Y. Q. Facile synthesis and photoelectrochemical characterization of Sb2O3 nanoprism arrays. J. Alloys Compd.2017, 727, 469–474.

    CAS  Google Scholar 

  17. Allen, J. P.; Carey, J. J.; Walsh, A.; Scanlon, D. O.; Watson, G. W. Electronic structures of antimony oxides. J. Phys. Chem. C2013, 117, 14759–14769.

    CAS  Google Scholar 

  18. Pereira, A. L. J.; Gracia, L.; Santamaría-Pérez, D.; Vilaplana, R.; Manjón, F. J.; Errandonea, D.; Nalin, M.; Beltrán, A. Structural and vibrational study of cubic Sb2O3 under high pressure. Phys. Rev. B2012, 85, 174108.

    Google Scholar 

  19. Oyedele, A. D.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures. Carbon2018, 131, 246–257.

    CAS  Google Scholar 

  20. Shim, J.; Kang, D. H.; Kim, Y.; Kum, H.; Kong, W.; Bae, S. H.; Almansouri, I.; Lee, K.; Park, J. H.; Kim, J. Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon2018, 133, 78–89.

    CAS  Google Scholar 

  21. Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Materialstoday2016, 19, 322–335.

    CAS  Google Scholar 

  22. Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D Layered material-based van der waals heterostructures for optoelectronics. Adv. Funct. Mater.2018, 28, 1706587.

    Google Scholar 

  23. Cheng, J. B.; Wang, C. L.; Zou, X. M.; Liao, L. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater.2019, 7, 1800441.

    Google Scholar 

  24. Sun, G. Z.; Li, B.; Li, J.; Zhang, Z. W.; Ma, H. F.; Chen, P.; Zhao, B.; Wu, R. X.; Dang, W. Q.; Yang, X. D. et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res.2019, 12, 1139–1145.

    CAS  Google Scholar 

  25. Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron.2018, 1, 356–361.

    CAS  Google Scholar 

  26. Wu, E. X.; Xie, Y.; Liu, Q. Z.; Hu, X. D.; Liu, J.; Zhang, D. H.; Zhou, C. W. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano2019, 13, 5430–5438.

    CAS  Google Scholar 

  27. Wu, Q. K.; Jeong, T.; Park, S.; Sun, J.; Kang, H.; Yoon, T.; Song, Y. J. Two-dimensional semiconducting and single-crystalline antimony trioxide directly-grown on monolayer graphene. Chem. Commun.2019, 55, 2473–2476.

    CAS  Google Scholar 

  28. Liu, X.; Sun, G. Z.; Chen, P.; Liu, J. C.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X.; Dang, W. Q. et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res.2019, 12, 339–344.

    CAS  Google Scholar 

  29. Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. Van der waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater.2019, 29, 1806611.

    Google Scholar 

  30. Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater.2016, 2, 1600298.

    Google Scholar 

  31. Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rummeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano2016, 10, 2063–2070.

    CAS  Google Scholar 

  32. Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater.2016, 28, 5019–5024.

    CAS  Google Scholar 

  33. Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Crystal Growth1999, 201–202, 236–241.

    Google Scholar 

  34. Liu, X. L.; Balla, I.; Bergeron, H.; Campbell, G. P.; Bedzyk, M. J.; Hersam, M. C. Rotationally commensurate growth of MoS2 on epitaxial graphene. ACS Nano2016, 10, 1067–1075.

    CAS  Google Scholar 

  35. Yang, S. X.; Kang, J.; Yue, Q.; Yao, K. Vapor phase growth and imaging stacking order of bilayer molybdenum disulfide. J. Phys. Chem. C2014, 118, 9203–9208.

    CAS  Google Scholar 

  36. Burton, W. K.; Cabrera, N. Crystal growth and surface structure. Part I. Discuss. Faraday Soc.1949, 5, 33–39.

    Google Scholar 

  37. Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett.2015, 15, 709–713.

    CAS  Google Scholar 

  38. Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elías, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano2015, 9, 11658–11666.

    CAS  Google Scholar 

  39. Rao, R.; Islam, A. E.; Singh, S.; Berry, R.; Kawakami, R. K.; Maruyama, B.; Katoch, J. Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS2 heterostructures. Phys. Rev. B2019, 99, 195401.

    CAS  Google Scholar 

  40. Shi, B.; Zhou, D. M.; Fang, S. X.; Djebbi, K.; Feng, S. L.; Zhao, H. Q.; Tlili, C.; Wang, D. Q. Facile and controllable synthesis of large-area monolayer WS2 flakes based on WO3 precursor drop-casted substrates by chemical vapor deposition. Nanomaterials2019, 9, 578.

    CAS  Google Scholar 

  41. Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater.2014, 24, 7025–7031.

    CAS  Google Scholar 

  42. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.

    CAS  Google Scholar 

  43. Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano2016, 10, 573–580.

    CAS  Google Scholar 

  44. Yang, P. F.; Zhang, Z. P.; Sun, M. X.; Lin, F.; Cheng, T.; Shi, J. P.; Xie, C. Y.; Shi, Y. P.; Jiang, S. L.; Huan, Y. H. et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano2019, 13, 3649–3658.

    CAS  Google Scholar 

  45. Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater.2016, 28, 10664–10672.

    CAS  Google Scholar 

  46. Yasir, M.; Kuzmin, M.; Punkkinen, M. P. J.; Mäkelä, J.; Tuominen, M.; Dahl, J.; Laukkanen, P.; Kokko, K. Synthesis and properties of crystalline thin film of antimony trioxide on the Si(1 0 0) substrate. Appl. Surf. Sci.2015, 349, 259–263.

    CAS  Google Scholar 

  47. Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der waals broadband detectors for dual-band detection. Adv. Mater.2017, 29, 1604439.

    Google Scholar 

  48. Zhou, X.; Zhou, N.; Li, C.; Song, H. Y.; Zhang, Q.; Hu, X. Z.; Gan, L.; Li, H. Q.; Lü, J. T.; Luo, J. et al. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater.2017, 4, 025048.

    Google Scholar 

  49. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun.2017, 8, 1906.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Fundamental Research Funds of the Central Universities (No. 531118010112), the Double First-Class University Initiative of Hunan University (No. 531109100004). We also acknowledge the support from the National Natural Science Foundation of China (No. 751214296), Hunan Key Laboratory of Two-Dimensional Materials (No. 801200005), and Strategic Priority Research Program of Chinese Academy of Science (No. XDB30000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Li, B., Wang, S. et al. Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Res. 12, 2781–2787 (2019). https://doi.org/10.1007/s12274-019-2513-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2513-6

Keywords

Navigation