Skip to main content
Log in

High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using two-dimensional (2D) metal-organic framework (MOF) nanosheets as new building blocks to create more complex architectures at the mesoscopic/macroscopic scale has attracted extensive interest in recent years. Nevertheless, it remains a great challenge to assemble MOF nanosheets into hierarchical hollow structures so far. In this paper, we describe a successful example of hierarchical MOF nanosheet microcapsules, with precisely controlled sizes, produced on large scale within minutes with a continuous droplet microfluidic strategy. Following a reaction/diffusion growth mechanism, the microcapsule shells feature a continuous smooth inner layer and a porous outer layer. Such hierarchical structure enables the encapsulation of magnetite nanoparticles inside and loading of dense gold nanoparticles outside the microcapsules, which exhibit highly efficient heterogeneous catalytic activity and easy recyclability. The present microfluidic assembly method offers a new pathway for preparing hierarchical MOF nanosheet structures, with the potential for extension to the formation of other 2D nanosheets in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev.2018, 47, 6267–6295.

    CAS  Google Scholar 

  2. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed.2018, 57, 16811–16815.

    CAS  Google Scholar 

  3. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater.2015, 14, 48–55.

    CAS  Google Scholar 

  4. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincã, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc.2015, 137, 13780–13783.

    CAS  Google Scholar 

  5. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    CAS  Google Scholar 

  6. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Google Scholar 

  7. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev.2018, 118, 6409–6455.

    CAS  Google Scholar 

  8. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater.2015, 27, 7372–7378.

    CAS  Google Scholar 

  9. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    CAS  Google Scholar 

  10. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev.2014, 43, 5700–5734.

    CAS  Google Scholar 

  11. Xuan, W. M.; Zhu, C. F.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev.2012, 41, 1677–1695.

    CAS  Google Scholar 

  12. He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci.2016, 7, 7101–7105.

    CAS  Google Scholar 

  13. Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed.2014, 126, 12725–12729.

    Google Scholar 

  14. Xia, H. C.; Zhang, J. N.; Yang, Z.; Guo, S. Y.; Guo, S. H.; Xu, Q. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Mirco Lett.2017, 9, 43.

    Google Scholar 

  15. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun.2017, 8, 15341.

    CAS  Google Scholar 

  16. Zheng, S. S.; Li, B.; Tang, Y. J.; Li, Q.; Xue, H. G.; Pang, H. Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)42H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale2018, 10, 13270–13276.

    CAS  Google Scholar 

  17. Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C. H.; Feng, P. Y.; Bu, X. H. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 4227–4231.

    CAS  Google Scholar 

  18. Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. K.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci.2018, 11, 2363–2371.

    CAS  Google Scholar 

  19. Cai, Z. X.; Wang, Z. L.; Kim, J.; Yamauchi, Y. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater.2019, 31, 1804903.

    Google Scholar 

  20. Zou, J. L.; Kim, F. Self-assembly of two-dimensional nanosheets induced by interfacial polyionic complexation. ACS Nano2012, 6, 10606–10613.

    CAS  Google Scholar 

  21. Hong, J.; Char, K.; Kim, B. S. Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle. J. Phys. Chem. Lett.2010, 1, 3442–3445.

    CAS  Google Scholar 

  22. Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum- glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed.2016, 55, 7423–7426.

    CAS  Google Scholar 

  23. Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev.2017, 117, 7964–8040.

    CAS  Google Scholar 

  24. Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem.2011, 3, 382–387.

    CAS  Google Scholar 

  25. Jeong, G. Y.; Ricco, R.; Liang, K.; Ludwig, J.; Kim, J. O.; Falcaro, P.; Kim, D. P. Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation. Chem. Mater.2015, 27, 7903–7909.

    CAS  Google Scholar 

  26. Faustini, M.; Kim, J.; Jeong, G. Y.; Kim, J. Y.; Moon, H. R.; Ahn, W. S.; Kim, D. P. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc.2013, 135, 14619–14626.

    CAS  Google Scholar 

  27. Witters, D.; Vergauwe, N.; Ameloot, R.; Vermeir, S.; De Vos, D.; Puers, R.; Sels, B.; Lammertyn, J. Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv. Mater.2012, 24, 1316–1320.

    CAS  Google Scholar 

  28. Wang, Y.; Li, L. J.; Yan, L. T.; Gu, X.; Dai, P. C.; Liu, D. D.; Bell, J. G.; Zhao, G. M.; Zhao, X. B.; Thomas, K. M. Bottom-up fabrication of ultrathin 2D Zr metal-organic framework nanosheets through a facile continuous microdroplet flow reaction. Chem. Mater.2018, 30, 3048–3059.

    CAS  Google Scholar 

  29. He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal- organic framework based microcapsules. Angew. Chem., Int. Ed.2018, 130, 10305–10309.

    Google Scholar 

  30. Tan, J. C.; Cheetham, A. K. Mechanical properties of hybrid inorganic- organic framework materials: Establishing fundamental structure-property relationships. Chem. Soc. Rev.2011, 40, 1059–1080.

    CAS  Google Scholar 

  31. Li, W. B.; Yang, Z. H.; Zhang, G. L.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. J. Stiff metal-organic framework-polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A2014, 2, 2110–2118.

    CAS  Google Scholar 

  32. Liu, J. W.; Cheng, J.; Che, R. C.; Xu, J.; Liu, M. M.; Liu, Z. W. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl. Mater. Interfaces2013, 5, 2503–2509.

    CAS  Google Scholar 

  33. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.1973, 241, 20–22.

    CAS  Google Scholar 

  34. Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L. Y.; Kim, J. W.; Fernandez-Nieves, A.; Martinez, C. J. et al. Designer emulsions using microfluidics. Mater. Today2008, 11, 18–27.

    CAS  Google Scholar 

  35. Xu, Y. Nanofluidics: A new arena for materials science. Adv. Mater.2018, 30, 1702419.

    Google Scholar 

  36. Tan, Z.; Chen, S. F.; Peng, X. S.; Zhang, L.; Gao, C. J. Polyamide membranes with nanoscale Turing structures for water purification. Science2018, 360, 518–521.

    CAS  Google Scholar 

  37. Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc.2011, 133, 5640–5643.

    CAS  Google Scholar 

  38. Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “Modular Assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc.2012, 134, 16524–16527.

    CAS  Google Scholar 

  39. Yu, J.; Mu, C.; Yan, B. Y.; Qin, X. Y.; Shen, C.; Xue, H. G.; Pang, H. Nanoparticle/MOF composites: Preparations and applications. Mater. Horiz.2017, 4, 557–569.

    CAS  Google Scholar 

  40. Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/ porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc.2017, 139, 2035–2044.

    CAS  Google Scholar 

  41. Yan, R.; Zhao, Y.; Yang, H.; Kang, X. J.; Wang, C.; Wen, L. L.; Lu, Z. D. Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal-organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater.2018, 28, 1802021.

    Google Scholar 

  42. Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc.2011, 133, 1304–1306.

    CAS  Google Scholar 

  43. Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C2010, 114, 8814–8820.

    CAS  Google Scholar 

  44. Ke, F.; Zhu, J. F.; Qiu, L. G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun.2013, 49, 1267–1269

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51873035, 21604024, and 21878089). This work was also sponsored by the Shanghai Municipal Natural Science Foundation (No. 17ZR1440400), “Qimingxing Plan” (No. 19QA1400200), “Chenguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (No. 16CG32), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shicheng Zhao or Shengtong Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xin, Z., Zhao, S. et al. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Res. 12, 2736–2742 (2019). https://doi.org/10.1007/s12274-019-2507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2507-4

Keywords

Navigation