Skip to main content
Log in

Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crystalline Ge is a highly active anode material for Li storage but inactive for Na storage because of high diffusion barrier. By in-situ Raman spectrum, we explore that the Na could reversibly alloy/dealloy with the amorphous Ge, but does not with the crystalline Ge. Herein, the amorphous Ge is fabricated by an acid-etching Zintl phase Mg2Ge route at room temperature, which shows a mesoporous architecture with a Brunauer–Emmett–Teller (BET) surface area of 29.9 m2·g−1 and a Barrett–Joyner–Halenda (BJH) average pore diameter of 7.6 nm. This mesoporous architecture would enhance the Na-ion/electron diffusion rate and buffer the volume expansion. As a result, the as-prepared amorphous Ge shows superior Na-ion storage performance including high reversible capacity over 550 mA·h·g−1 at 0.2 C after 50 cycles, good rate capability with a capacity of 273 mA·h·g−1 maintained at 5.0 C, and long-term cycling stability with capacities of 450 mA·h·g−1 at 0.4 C after 200 cycles. For the K-ion storage, the amorphous Ge is also more active than the crystalline counter and maintains a capacity of 210 mA·h·g−1 after 100 cycles at 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  2. Yadegari, H.; Sun, Q.; Sun, X. L. Sodium-oxygen batteries: A comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 2016, 28, 7065–7093.

    Article  Google Scholar 

  3. Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011–A1014.

    Article  Google Scholar 

  4. You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243–7248.

    Article  Google Scholar 

  5. Balogun, M. S.; Luo, Y.; Qiu, W. T.; Liu, P.; Tong, Y. X. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162–178.

    Article  Google Scholar 

  6. Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353–9378.

    Article  Google Scholar 

  7. Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.

    Article  Google Scholar 

  8. Deng, M. X.; Li, S. J.; Hong, W. W.; Jiang, Y. L.; Xu, W.; Shuai, H. L.; Zou, G. Q.; Hu, Y. C.; Hou, H. S.; Wang, W. L. et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater. Chem. Phys. 2019, 223, 46–52.

    Article  Google Scholar 

  9. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    Article  Google Scholar 

  10. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  11. Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288.

    Article  Google Scholar 

  12. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  Google Scholar 

  13. Yue, C.; Yu, Y. J.; Sun, S. B.; He, X.; Chen, B. B.; Lin, W.; Xu, B. B.; Zheng, M. S.; Wu, S. T.; Li, J. et al. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 1386–1392.

    Article  Google Scholar 

  14. Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; Kalisvaart, W. P.; Mitlin, D. Activation with Li enables facile sodium storage in germanium. Nano Lett. 2014, 14, 5873–5882.

    Article  Google Scholar 

  15. Lu, X. T.; Adkins, E. R.; He, Y.; Zhong, L.; Luo, L. L.; Mao, S. X.; Wang, C. M.; Korgel, B. A. Germanium as a sodium Ion battery material: In situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 2016, 28, 1236–1242.

    Article  Google Scholar 

  16. Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Nanometer-sized colloidal germanium particles: Wet-chemical synthesis, laser-induced crystallization and particle growth. Adv. Mater. 1993, 5, 634–636.

    Article  Google Scholar 

  17. Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Phase changes in Ge nanoparticles. Chem. Mater. 2005, 17, 4858–4864.

    Article  Google Scholar 

  18. Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y. K.; Yoon, C. S.; Cho, J. Surfacestabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. B 2005, 109, 20719–20723.

    Article  Google Scholar 

  19. Heath, J. R.; Shiang, J. J.; Alivisatos, A. P. Germanium quantum dots: Optical properties and synthesis. J. Chem. Phys. 1994, 101, 1607–1615.

    Article  Google Scholar 

  20. Sun, X. L.; Si, W. P.; Xi, L. X.; Liu, B.; Liu, X. J.; Yan, C. L.; Schmidt, O. G. In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2015, 2, 737–742.

    Article  Google Scholar 

  21. Armatas, G. S.; Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 2006, 313, 817–820.

    Article  Google Scholar 

  22. Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chem. Mater. 1998, 10, 22–24.

    Article  Google Scholar 

  23. Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater. 1999, 11, 2493–2500.

    Article  Google Scholar 

  24. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

    Article  Google Scholar 

  25. Serino, A. C.; Ko, J. S.; Yeung, M. T.; Schwartz, J. J.; Kang, C. B.; Tolbert, S. H.; Kaner, R. B.; Dunn, B. S.; Weiss, P. S. Lithium-ion insertion properties of solution-exfoliated germanane. ACS Nano 2017, 11, 7995–8001.

    Article  Google Scholar 

  26. Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941–6946.

    Article  Google Scholar 

  27. Ma, X. C.; Wu, F. Y.; Kauzlarich, S. M. Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe: Synthesis, functionalization and optical properties. J. Solid State Chem. 2008, 181, 1628–1633.

    Article  Google Scholar 

  28. Vilcarromero, J.; Marques, F. C. XPS study of the chemical bonding in hydrogenated amorphous germanium–carbon alloys. Appl. Phys. A 2000, 70, 581–585.

    Article  Google Scholar 

  29. Legrain, F.; Malyi, O. I.; Manzhos, S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics 2013, 253, 157–163.

    Article  Google Scholar 

  30. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

    Article  Google Scholar 

  31. Wu, T. J.; Jing, M. J.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhang, Y.; Zhang, Y.; Cao, X. Y.; Ji, X. B. Controllable chain-length for covalent sulfur–carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 2019, 9, 1803478.

    Article  Google Scholar 

  32. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  Google Scholar 

  33. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  Google Scholar 

  34. Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434–442.

    Article  Google Scholar 

  35. Sultana, I.; Rahman, M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506–23512.

    Article  Google Scholar 

  36. McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158–26166.

    Article  Google Scholar 

  37. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energydensity potassium-ion batteries. Angew. Chemi. 2018, 130, 4777–4781.

    Article  Google Scholar 

  38. Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  Google Scholar 

  39. Sultana, I.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.

    Article  Google Scholar 

  40. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Article  Google Scholar 

  41. Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.

    Article  Google Scholar 

  42. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Article  Google Scholar 

  43. Zhang, Y.; Yang, L.; Tian, Y.; Li, L.; Li, J. Y.; Qiu, T. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 2019, 229, 303–309.

    Google Scholar 

  44. Huang, Z.; Chen, Z.; Ding, S. S.; Chen, C. M.; Zhang, M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 2018, 219, 19–22.

    Article  Google Scholar 

  45. Sultana, I.; Ramireddy, T.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Tinbased composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21701163, 21671181, and 21831006), and Anhui Provincial Natural Science Foundation (No. 1808085QB25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Lin, N., Li, T. et al. Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage. Nano Res. 12, 1824–1830 (2019). https://doi.org/10.1007/s12274-019-2442-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2442-4

Keywords

Navigation