Skip to main content
Log in

Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 June 2020

This article has been updated

Abstract

The development of non-precious, acid-stable, oxygen reduction reaction (ORR) electrocatalysts can significantly aid the commercialization of proton exchange membrane fuel cells (PEMFCs). We report a survey of the ORR electrocatalysis on 3d metal substituted (M = Mn, Fe, Co) molybdenum and tungsten nitrides in acidic environments. We find that molybdate catalysts are more active than tungstates, with the specific activity depending on the chemistry of the substituted 3d metal. In both families, more electronegative 3d metals led to higher ORR activity (i.e., Co > Fe > Mn). We attribute this result to the ability of the more electronegative 3d metal to withdraw electrons from the Mo- or W-based active sites, effectively oxidizing the metal centers of the catalysts. Based on our observation, future nitride ORR electrocatalysts can be further optimized by oxidizing the Mo sites further by, for example, adding even more electronegative dopant metals or incorporating anion vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 June 2020

    The NSF number in Acknowledgements in page 2311 was unfortunately wrong, instead of The work is supported by the National Science Foundation (NSF) under Grant No. CHE-1805400.

    It should read The work is supported by the National Science Foundation (NSF) under Grant No. CHE-1665305.

References

  1. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  Google Scholar 

  2. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  3. Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

    Article  Google Scholar 

  4. Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources 2011, 196, 666–673.

    Article  Google Scholar 

  5. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  6. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  7. Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.

    Article  Google Scholar 

  8. Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    Article  Google Scholar 

  9. Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J. P.; Strasser, P. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 2015, 6, 8618.

    Article  Google Scholar 

  10. An, L.; Huang, W.; Zhang, N.; Chen, X.; Xia, D. A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 62–65.

    Article  Google Scholar 

  11. Abroshan, H.; Bothra, P.; Back, S.; Kulkarni, A.; Nørskov, J. K.; Siahrostami, S. Ultrathin cobalt oxide overlayer promotes catalytic activity of cobalt nitride for the oxygen reduction reaction. J. Phys. Chem. C 2018, 122, 4783–4791.

    Article  Google Scholar 

  12. Miura, A.; Rosero-Navarro, C.; Masubuchi, Y.; Higuchi, M.; Kikkawa, S.; Tadanaga, K. Nitrogen-rich manganese oxynitrides with enhanced catalytic activity in the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 7963–7967.

    Article  Google Scholar 

  13. Wang, L.; Yin, J.; Zhao, L.; Tian, C.; Yu, P.; Wang, J.; Fu, H. Ionexchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022–3024.

    Article  Google Scholar 

  14. Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 2015, 5, 1857–1862.

    Article  Google Scholar 

  15. Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on nonprecious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  16. Cao, B.; Veith, G. M.; Diaz, R. E.; Liu, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 10753–10757.

    Article  Google Scholar 

  17. Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg. Chem. 2015, 54, 2128–2136.

    Article  Google Scholar 

  18. Miura, A.; Wen, X.; Abe, H.; Yau, G.; DiSalvo, F. J. Non-stoichiometric FexWN2: Leaching of Fe from layer-structured FeWN2. J. Solid State Chem. 2010, 183, 327–331.

    Article  Google Scholar 

  19. Luo, J.; Tian, X.; Zeng, J.; Li, Y.; Song, H.; Liao, S. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165–6174.

    Article  Google Scholar 

  20. Grins, J.; Käll, P. O.; Svensson, G. Synthesis and structural characterisation of MnWN2 prepared by ammonolysis of MnWO4. J. Mater. Chem. 1995, 5, 571–575.

    Article  Google Scholar 

  21. DiSalvo, F. J.; Clarke, S. J. Ternary nitrides: A rapidly growing class of new materials. Curr. Opin. Solid State Mater. Sci. 1996, 1, 241–249.

    Article  Google Scholar 

  22. Bern, D. S.; Olsen, H. P.; zur Loye, H. C. Synthesis, electronic and magnetic characterization of the ternary nitride (Fe0.8Mo0.2)MoN2. Chem. Mater. 1995, 7, 1824–1828.

    Article  Google Scholar 

  23. Bem, D. S.; Lampe-Önnerud, C. M.; Olsen, H. P.; zur Loye, H. C. Synthesis and structure of two new ternary nitrides: FeWN2 and MnMoN2. Inorg. Chem. 1996, 35, 581–585.

    Article  Google Scholar 

  24. Panda, R. N.; Gajbhiye, N. S. Chemical synthesis and magnetic properties of nanocrystalline FeMoN2. J. Cryst. Growth 1998, 191, 92–96.

    Article  Google Scholar 

  25. Jackson, S. K.; Layland, R. C.; zur Loye, H. C. The simultaneous powder X-ray and neutron diffraction refinement of two η-carbide type nitrides, Fe3Mo3N and Co3Mo3N, prepared by ammonolysis and by plasma nitridation of oxide precursors. J. Alloys Compd. 1999, 291, 94–101.

    Article  Google Scholar 

  26. Cao, B.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Article  Google Scholar 

  27. Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068–3076.

    Article  Google Scholar 

  28. Cao, B. Investigations of non-noble metal based oxynitrides and nitrides as electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction. Ph.D. Dissertation, Stony Brook University, New York, 2014.

    Google Scholar 

  29. Zhong, H.; Zhang, H.; Liang, Y.; Zhang, J.; Wang, M.; Wang, X. A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells. J. Power Sources 2007, 164, 572–577.

    Article  Google Scholar 

  30. Tian, X.; Luo, J.; Nan, H.; Fu, Z.; Zeng, J.; Liao, S. Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 16801–16809.

    Article  Google Scholar 

  31. Hada, K.; Nagai, M.; Omi, S. Characterization and HDS activity of cobalt molybdenum nitrides. J. Phys. Chem. B 2001, 105, 4084–4093.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Francis J. DiSalvo (Cornell) for valuable discussions and use of his laboratory facility. The work is supported by the National Science Foundation (NSF) under Grant No. CHE-1805400. This work used the Cornell Center for Materials Research Shared Facilities which were supported through the NSF Materials Research Science and Engineering Center program (DMR-1120296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Suntivich.

Electronic Supplementary Material

12274_2019_2440_MOESM1_ESM.pdf

Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, K.E., Yan, Y. & Suntivich, J. Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid. Nano Res. 12, 2307–2312 (2019). https://doi.org/10.1007/s12274-019-2440-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2440-6

Keywords

Navigation