Skip to main content
Log in

Nanoengineering of solid oxide electrochemical cell technologies: An outlook

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High temperature electrochemical energy conversion and storage technologies, such as solid oxide electrochemical cells (SOCs), have emerged as promising alternatives to mitigate environmental issues associated with combustion-based technologies. There has been increased interest for nanoengineering SOC electrodes to enhance their efficiency. A major drive is the necessity for improved electrode kinetics via optimization of electrocatalysts for different key reactions in these devices. In this perspective, we discuss the requirements for SOC electrodes and nanoengineering strategies employed to achieve flexibility in electrode materials. We focus on identifying ways in which these nanoengineered materials foster advancements in the SOC electrocatalytic activity, selectivity, and stability. We conclude by proposing approaches that would lead to more stable electrocatalytic nanostructures with high degree of control over the number and nature of active sites. These nanostructures would enable systematic kinetic studies that could provide an in depth understanding of the reaction mechanisms that govern performance, leading to valuable knowledge for designing optimal electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S. B.; Liu, Q. X.; Luo, J. L. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catal. 2016, 6, 6219–6228.

    Google Scholar 

  2. Yi, Y. F.; Rao, A. D.; Brouwer, J.; Samuelsen, G. S. Fuel flexibility study of an integrated 25 kW SOFC reformer system. J. Power Sources 2005, 144, 67–76.

    Google Scholar 

  3. Eguchi, K.; Kunisa, Y.; Adachi, K.; Arai, H. Effect of anodic concentration overvoltage on power generation characteristics of solid oxide fuel cells. J. Electrochem. Soc. 1996, 143, 3699–3703.

    Google Scholar 

  4. Neagu, D.; Oh, T. S.; Miller, D. N.; Menard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 2015, 6, 8120.

    Google Scholar 

  5. Uchida, H.; Suzuki, S.; Watanabe, M. High performance electrode for medium-temperature solid oxide fuel cells mixed conducting ceria-based anode with highly dispersed Ni electrocatalysts. Electrochem. Solid-State Lett. 2003, 6, A174–A177.

    Google Scholar 

  6. Kim, J. S.; Wieder, N. L.; Abraham, A. J.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 2011, 158, B596–B600.

    Google Scholar 

  7. Jiang, Z. Y.; Xia, C. R.; Chen, F. L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim. Acta 2010, 55, 3595–3605.

    Google Scholar 

  8. Zhan, Z. L.; Bierschenk, D. M.; Cronin, J. S.; Barnett, S. A. A reduced temperature solid oxide fuel cell with nanostructured anodes. Energ. Environ. Sci. 2011, 4, 3951–3954.

    Google Scholar 

  9. Shah, M.; Voorhees, P. W.; Barnett, S. A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening. Solid State Ionics 2011, 187, 64–67.

    Google Scholar 

  10. Wang, W. S.; Gross, M. D.; Vohs, J. M.; Gorte, R. J. The stability of LSF-YSZ electrodes prepared by infiltration. J. Electrochem. Soc. 2007, 154, B439–B445.

    Google Scholar 

  11. Liang, F. L.; Chen, J.; Jiang, S. P.; Wang, F. Z.; Chi, B.; Pu, J.; Jian, L. Mn-stabilised microstructure and performance of Pd-impregnated YSZ cathode for intermediate temperature solid oxide fuel cells. Fuel Cells 2009, 9, 636–642.

    Google Scholar 

  12. Hauch, A.; Ebbesen, S. D.; Jensen, S. H.; Mogensen, M. Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. J. Electrochem. Soc. 2008, 155, B1184–B1193.

    Google Scholar 

  13. Zhan, Z. L.; Zhao, L. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Power Sources 2010, 195, 7250–7254.

    Google Scholar 

  14. Nikolla, E.; Schwank, J. W.; Linic, S. Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions. Catal. Today 2008, 136, 243–248.

    Google Scholar 

  15. Nikolla, E.; Schwank, J.; Linic, S. Direct electrochemical oxidation of hydrocarbon fuels on SOFCs: Improved carbon tolerance of Ni alloy anodes. J. Electrochem. Soc. 2009, 156, B1312–B1316.

    Google Scholar 

  16. Li, H. X.; Sun, G. H.; Xie, K.; Qi, W. T.; Qin, Q. Q.; Wei, H. S.; Chen, S. G.; Wang, Y.; Zhang, Y.; Wu, Y. C. Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis. Int. J. Hydrogen Energy 2014, 39, 20888–20897.

    Google Scholar 

  17. Adijanto, L.; Sampath, A.; Yu, A. S.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 2013, 3, 1801–1809.

    Google Scholar 

  18. Weber, A.; Sauer, B.; Muller, A. C.; Herbstritt, D.; Ivers-Tiffee, E. Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics 2002, 152-153, 543–550.

    Google Scholar 

  19. Shao, Z.; Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 255–258.

    Google Scholar 

  20. Graves, C.; Ebbesen, S. D.; Mogensen, M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ionics 2011, 192, 398–403.

    Google Scholar 

  21. Sanchez-Sanchez, C. M.; Montiel, V.; Tryk, D. A.; Aldaz, A.; Fujishima, A. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl. Chem. 2001, 73, 1917–1927.

    Google Scholar 

  22. Xie, K.; Zhang, Y. Q.; Meng, G. Y.; Irvine, J. T. S. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ. Sci. 2011, 4, 2218–2222.

    Google Scholar 

  23. Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A-Gen. 1997, 161, 59–78.

    Google Scholar 

  24. Wilhelm, D. J.; Simbeck, D. R.; Karp, A. D.; Dickenson, R. L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook. Fuel Process. Technol. 2001, 71, 139–148.

    Google Scholar 

  25. Whipple, D. T.; Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 2010, 1, 3451–3458.

    Google Scholar 

  26. Oloman, C.; Li, H. Electrochemical processing of carbon dioxide. ChemSusChem 2008, 1, 385–391.

    Google Scholar 

  27. Sullivan, B. P.; Krist, K.; Guard, H. E. Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Elsevier: Amsterdam, 1993.

    Google Scholar 

  28. Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19.

    Google Scholar 

  29. Lynch, M. E.; Yang, L.; Qin, W. T.; Choi, J. J.; Liu, M. F.; Blinn, K.; Liu, M. L. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3-δ investigated using a new test electrode platform. Energy Environ. Sci. 2011, 4, 2249–2258.

    Google Scholar 

  30. Chen, Y.; Lin, Y.; Zhang, Y. X.; Wang, S. W.; Su, D.; Yang, Z. B.; Han, M. F.; Chen, F. L. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy 2014, 8, 25–33.

    Google Scholar 

  31. Chen, Y.; Chen, Y.; Ding, D.; Ding, Y.; Choi, Y. M.; Zhang, L.; Yoo, S.; Chen, D. C.; deGlee, B.; Xu, H. et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy Environ. Sci. 2017, 10, 964–971.

    Google Scholar 

  32. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104, 4791–4844.

    Google Scholar 

  33. Gu, X. K.; Samira, S.; Nikolla, E. Oxygen sponges for electrocatalysis: Oxygen reduction/evolution on nonstoichiometric, mixed metal oxides. Chem. Mater. 2018, 30, 2860–2872.

    Google Scholar 

  34. Siebert, E.; Hammouche, A.; Kleitz, M. Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics. Electrochim. Acta 1995, 40, 1741–1753.

    Google Scholar 

  35. Jorgensen, M. J.; Mogensen, M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 2001, 148, A433–A442.

    Google Scholar 

  36. Ingram, D. B.; Linic, S. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. J. Electrochem. Soc. 2009, 156, B1457–B1465.

    Google Scholar 

  37. Gu, X. K.; Nikolla, E. Fundamental insights into high-temperature water electrolysis using Ni-based electrocatalysts. J. Phys. Chem. C 2015, 119, 26980–26988.

    Google Scholar 

  38. Cho, A.; Ko, J.; Kim, B. K.; Han, J. W. Electrocatalysts with increased activity for coelectrolysis of steam and carbon dioxide in solid oxide electrolyzer cells. ACS Catal. 2019, 9, 967–976.

    Google Scholar 

  39. Gu, X. K.; Carneiro, J. S. A.; Nikolla, E. First-principles study of high temperature CO2 electrolysis on transition metal electrocatalysts. Ind. Eng. Chem. Res. 2017, 56, 6155–6163.

    Google Scholar 

  40. Hayd, J.; Yokokawa, H.; Ivers-Tiffeé, E. Hetero-interfaces at nanoscaled (La, Sr)CoO3-δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 2013, 160, F351–F359.

    Google Scholar 

  41. Mutoro, E.; Crumlin, E. J.; Biegalski, M. D.; Christen, H. M.; Shao-Horn, Y. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells. Energy Environ. Sci. 2011, 4, 3689–3696.

    Google Scholar 

  42. Carneiro, J. S. A.; Brocca, R. A.; Lucena, M. L. R. S.; Nikolla, E. Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides. Appl. Catal. B-Environ. 2017, 200, 106–113.

    Google Scholar 

  43. Ma, X. F.; Carneiro, J. S. A; Gu, X. K.; Qin, H.; Xin, H. L.; Sun, K.; Nikolla, E. Engineering complex, layered metal oxides: High-performance nickelate oxide nanostructures for oxygen exchange and reduction. ACS Catal. 2015, 5, 4013–4019.

    Google Scholar 

  44. Gu, X. K.; Carneiro, J. S. A.; Samira, S.; Das, A.; Ariyasingha, N. M.; Nikolla, E. Efficient oxygen electrocatalysis by nanostructured mixed-metal oxides. J. Am. Chem. Soc. 2018, 140, 8128–8137.

    Google Scholar 

  45. Armstrong, E. N.; Duncan, K. L.; Oh, D. J.; Weaver, J. F.; Wachsman, E. D. Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes. J. Electrochem. Soc. 2011, 158, B492–B499.

    Google Scholar 

  46. Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 2000, 404, 265–267.

    Google Scholar 

  47. Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. Int. J. Hydrogen Energy 2012, 37, 449–470.

    Google Scholar 

  48. Jiang, S. P. A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater. Sci. Eng. A 2006, 418, 199–210.

    Google Scholar 

  49. Gorte, R. J.; Vohs, J. M. Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 2009, 14, 236–244.

    Google Scholar 

  50. Vohs, J. M.; Gorte, R. J. High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 2009, 21, 943–956.

    Google Scholar 

  51. Sholklapper, T. Z.; Jacobson, C. P.; Visco, S. J.; De Jonghe, L. C. Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 2008, 8, 303–312.

    Google Scholar 

  52. Jiang, S. P.; Ye, Y. M.; He, T. M.; Ho, S. B. Nanostructured palladium— La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3-ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 2008, 185, 179–182.

    Google Scholar 

  53. Huang, Y. Y.; Ahn, K.; Vohs, J. M.; Gorte, R. J. Characterization of Srdoped LaCoO3-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 2004, 151, A1592–A1597.

    Google Scholar 

  54. Huang, Y. Y.; Vohs, J. M.; Gorte, R. J. An examination of LSM-LSCo mixtures for use in SOFC cathodes. J. Electrochem. Soc. 2006, 153, A951–A955.

    Google Scholar 

  55. Sase, M.; Ueno, D.; Yashiro, K.; Kaimai, A.; Kawada, T.; Mizusaki, J. Interfacial reaction and electrochemical properties of dense (La, Sr)CoO3-δ cathode on YSZ (100). J. Phys. Chem. Solids 2005, 66, 343–348.

    Google Scholar 

  56. Graves, C.; Sudireddy, B. R.; Mogensen, M. Molybdate based ceramic negative-electrode materials for solid oxide cells. ECS Trans. 2010, 28, 173–192.

    Google Scholar 

  57. Tao, S. W.; Irvine, J. T. S. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003, 2, 320–323.

    Google Scholar 

  58. Choi, S.; Yoo, S.; Shin, J. Y.; Kim, G. High performance SOFC cathode prepared by infiltration of Lan+1NinO3n+1 (n = 1, 2, and 3) in porous YSZ. J. Electrochem. Soc. 2011, 158, B995–B999.

    Google Scholar 

  59. Yang, G. M.; Su, C.; Ran, R.; Tade, M. O.; Shao, Z. P. Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4-type La2NiO4 electrode. Energy Fuels 2013, 28, 356–362.

    Google Scholar 

  60. Zhang, X. X.; Zhang, H.; Liu, X. B. High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ cathode for solid oxide fuel cells. J. Power Sources 2014, 269, 412–417.

    Google Scholar 

  61. Zhao, H.; Mauvy, F.; Lalanne, C.; Bassat, J. M.; Fourcade, S.; Grenier, J. C. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2-xNiO4+δ. Solid State Ionics 2008, 179, 2000–2005.

    Google Scholar 

  62. Hernández, A. M.; Mogni, L.; Caneiro, A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes. Int. J. Hydrogen Energy 2010, 35, 6031–6036.

    Google Scholar 

  63. Figueiredo, F. M.; Labrincha, J. A.; Frade, J. R.; Marques, F. M. B. Reactions between a zirconia-based electrolyte and LaCoO3-based electrode materials. Solid State Ionics 1997, 101-103, 343–349.

    Google Scholar 

  64. Bassat, J. M.; Odier, P.; Villesuzanne, A.; Marin, C.; Pouchard, M. Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 2004, 167, 341–347.

    Google Scholar 

  65. Kim, G.; Wang, S.; Jacobson, A. J.; Chen, C. L. Measurement of oxygen transport kinetics in epitaxial La2NiO4+δ thin films by electrical conductivity relaxation. Solid State Ionics 2006, 177, 1461–1467.

    Google Scholar 

  66. Shen, Y. N.; Zhao, H. L.; Liu, X. T.; Xu, N. S. Preparation and electrical properties of Ca-doped La2NiO4+δ cathode materials for IT-SOFC. Phys. Chem. Chem. Phys. 2010, 12, 15124–15131.

    Google Scholar 

  67. Li, Y. F.; Zhang, W. Q.; Zheng, Y.; Chen, J.; Yu, B.; Chen, Y.; Liu, M. L. Controlling cation segregation in perovskite-based electrodes for high electrocatalytic activity and durability. Chem. Soc. Rev. 2017, 46, 6345–6378.

    Google Scholar 

  68. Rupp, G. M.; Opitz, A. K.; Nenning, A.; Limbeck, A.; Fleig, J. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat. Mater. 2017, 16, 640–645.

    Google Scholar 

  69. Druce, J.; Tellez, H.; Burriel, M.; Sharp, M. D.; Fawcett, L. J.; Cook, S. N.; McPhail, D. S.; Ishihara, T.; Brongersma, H. H.; Kilner, J. A. Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 2014, 7, 3593–3599.

    Google Scholar 

  70. Burriel, M.; Tellez, H.; Chater, R. J.; Castaing, R.; Veber, P.; Zaghrioui, M.; Ishihara, T.; Kilner, J. A.; Bassat, J. M. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 2016, 120, 17927–17938.

    Google Scholar 

  71. Burriel, M.; Wilkins, S.; Hill, J. P.; Munoz-Marquez, M. A.; Brongersma, H. H.; Kilner, J. A.; Ryan, M. P.; Skinner, S. J. Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 2014, 7, 311–316.

    Google Scholar 

  72. Wu, J.; Pramana, S. S.; Skinner, S. J.; Kilner, J. A.; Horsfield, A. P. Why Ni is absent from the surface of La2NiO4+δ? J. Mater. Chem. A 2015, 3, 23760–23767.

    Google Scholar 

  73. Horvath, G.; Gerblinger, J.; Meixner, H.; Giber, J. Segregation driving forces in perovskite titanates. Sensors Actuat B-Chem. 1996, 32, 93–99.

    Google Scholar 

  74. Noguera, C.; Goniakowski, J. Polarity in oxide nano-objects. Chem. Rev. 2013, 113, 4073–4105.

    Google Scholar 

  75. Deak, D. S. Strontium titanate surfaces. Mater. Sci. Technol. 2007, 23, 127–136.

    Google Scholar 

  76. Bonnell, D. A.; Garra, J. Scanning probe microscopy of oxide surfaces: Atomic structure and properties. Rep. Prog. Phys. 2008, 71, 044501.

    Google Scholar 

  77. Szot, K.; Speier, W. Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 1999, 60, 5909–5926.

    Google Scholar 

  78. Szot, K.; Speier, W.; Carius, R.; Zastrow, U.; Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys. Rev. Lett. 2002, 88, 075508.

    Google Scholar 

  79. Jalili, H.; Han, J. W.; Kuru, Y.; Cai, Z. H.; Yildiz, B. New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3. J. Phys. Chem. Lett. 2011, 2, 801–807.

    Google Scholar 

  80. Lee, W.; Han, J. W.; Chen, Y.; Cai, Z. H.; Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 2013, 135, 7909–7925.

    Google Scholar 

  81. Neagu, D.; Tsekouras, G.; Miller, D. N.; Ménard, H.; Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916–923.

    Google Scholar 

  82. Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M. B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014.

    Google Scholar 

  83. Neagu, D.; Irvine, J. T. S. Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 2011, 23, 1607–1617.

    Google Scholar 

  84. Yoshimatsu, K.; Wadati, H.; Sakai, E.; Harada, T.; Takahashi, Y.; Harano, T.; Shibata, G.; Ishigami, K.; Kadono, T.; Koide, T. et al. Spectroscopic studies on the electronic and magnetic states of Co-doped perovskite manganite Pr0.8Ca0.2Mn1-yCoyO3 thin films. Phys. Rev. B 2013, 88, 174423.

    Google Scholar 

  85. Pavone, M.; Ritzmann, A. M.; Carter, E. A. Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 2011, 4, 4933–4937.

    Google Scholar 

  86. Samira, S.; Camayang, J. C. A.; Nacy, A. M.; Diaz, M.; Meira, S. M.; Nikolla, E. Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution. J. Electroanal. Chem. 2019, 833, 490–497.

    Google Scholar 

  87. Ma, X.; Wang, B.; Xhafa, E.; Sun, K.; Nikolla, E. Synthesis of shape-controlled La2NiO4+δ nanostructures and their anisotropic properties for oxygen diffusion. Chem. Commun. 2015, 51, 137–140.

    Google Scholar 

  88. Kubicek, M.; Limbeck, A.; Fromling, T.; Hutter, H.; Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. J. Electrochem. Soc. 2011, 158, B727–B734.

    Google Scholar 

  89. Baumann, F. S.; Fleig, J.; Konuma, M.; Starke, U.; Habermeier, H. U.; Maier, J. Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3-δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 2005, 152, A2074–A2079.

    Google Scholar 

  90. Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002, 418, 164–167.

    Google Scholar 

  91. Kan, W. H.; Samson, A. J.; Thangadurai, V. Trends in electrode development for next generation solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 17913–17932.

    Google Scholar 

  92. Sun, Y. F.; Li, J. H.; Cui, L.; Hua, B.; Cui, S. H.; Li, J.; Luo, J. L. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: A novel coking-tolerant fuel cell anode catalyst. Nanoscale 2015, 7, 11173–11181.

    Google Scholar 

  93. Yang, C. H.; Li, J.; Lin, Y.; Liu, J.; Chen, F. L.; Liu, M. L. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy 2015, 11, 704–710.

    Google Scholar 

  94. Zhu, Y. L.; Zhou, W.; Ran, R.; Chen, Y. B.; Shao, Z. P.; Liu, M. L. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 2016, 16, 512–518.

    Google Scholar 

  95. Sun, Y. F.; Li, J. H.; Wang, M. N.; Hua, B.; Li, J.; Luo, J. L. A-site deficient chromite perovskite with in situ exsolution of nano-Fe: A promising bi-functional catalyst bridging the growth of CNTs and SOFCs. J. Mater. Chem. A 2015, 3, 14625–14630.

    Google Scholar 

  96. Sun, Y. F.; Li, J. H.; Zeng, Y. M.; Amirkhiz, B. S.; Wang, M. N.; Behnamian, Y.; Luo, J. L. A-site deficient perovskite: The parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J. Mater. Chem. A 2015, 3, 11048–11056.

    Google Scholar 

  97. Zhang, J.; Xie, K.; Gan, Y.; Wu, G. J.; Ding, B.; Zhang, Y.; Wu, Y. C. Composite titanate cathode enhanced with in situ grown nickel nanocatalyst for direct steam electrolysis. New J. Chem. 2014, 38, 3434–3442.

    Google Scholar 

  98. Tsekouras, G.; Neagu, D.; Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 2013, 6, 256–266.

    Google Scholar 

  99. Oh, T. S.; Rahani, E. K.; Neagu, D.; Irvine, J. T. S.; Shenoy, V. B.; Gorte, R. J.; Vohs, J. M. Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution. J. Phys. Chem. Lett. 2015, 6, 5106–5110.

    Google Scholar 

  100. Papargyriou, D.; Irvine, J. T. S. Nickel nanocatalyst exsolution from (La, Sr)(Cr, M, Ni)O3 (M = Mn, Fe) perovskites for the fuel oxidation layer of oxygen transport membranes. Solid State Ionics 2016, 288, 120–123.

    Google Scholar 

  101. Yoon, H.; Zou, J.; Sammes, N. M.; Chung, J. Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells. Int. J. Hydrogen Energy 2015, 40, 10985–10993.

    Google Scholar 

  102. Thalinger, R.; Gocyla, M.; Heggen, M.; Klotzer, B.; Penner, S. Exsolution of Fe and SrO nanorods and nanoparticles from lanthanum strontium ferrite La0.6Sr0.4FeO3-δ materials by hydrogen reduction. J. Phys. Chem. C 2015, 119, 22050–22056.

    Google Scholar 

  103. Zhou, W.; Shao, Z. P.; Liang, F. L.; Chen, Z. G.; Zhu, Z. H.; Jin, W. Q.; Xu, N. P. A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 2011, 21, 15343–15351.

    Google Scholar 

  104. Wei, T.; Singh, P.; Gong, Y. H.; Goodenough, J. B.; Huang, Y. H.; Huang, K. V. Sr3-3xNa3xSi3O9-1.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. Energy Environ. Sci. 2014, 7, 1680–1684.

    Google Scholar 

  105. Gao, Z.; Miller, E. C.; Barnett, S. A. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ electrolyte and nano-scale anode. Adv. Funct. Mater. 2014, 24, 5703–5709.

    Google Scholar 

  106. Lee, J. J.; Moon, H.; Park, H. G.; Yoon, D. I.; Hyun, S. H. Applications of nano-composite materials for improving the performance of anode-supported electrolytes of SOFCs. Int. J. Hydrogen Energy 2010, 35, 738–744.

    Google Scholar 

  107. Kim, G.; Lee, S.; Shin, J. Y.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Investigation of the structural and catalytic requirements for highperformance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 2009, 12, B48–B52.

    Google Scholar 

  108. Lee, J. G.; Park, M. G.; Hyun, S. H.; Shul, Y. G. Nano-composite Ni-Gd0.1Ce0.9O1.95 anode functional layer for low temperature solid oxide fuel cells. Electrochim. Acta 2014, 129, 100–106.

    Google Scholar 

  109. Tsvetkov, N.; Lu, Q. Y.; Sun, L. X.; Crumlin, E. J.; Yildiz, B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 2016, 15, 1010–1016.

    Google Scholar 

  110. Han, D.; Liu, X. J.; Zeng, F. R.; Qian, J. Q.; Wu, T. Z.; Zhan, Z. L. A micronano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2012, 2, 462.

    Google Scholar 

  111. Xia, C. R.; Liu, M. L. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics 2001, 144, 249–255.

    Google Scholar 

  112. Zhang, L.; Chen, F. L.; Xia, C. R. Spin-coating derived solid oxide fuel cells operated at temperatures of 500 °C and below. Int. J. Hydrogen Energy 2010, 35, 13262–13270.

    Google Scholar 

  113. Kim, J. W.; Virkar, A. V.; Fung, K. Z.; Mehta, K.; Singhal, S. C. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J. Electrochem. Soc. 1999, 146, 69–78.

    Google Scholar 

  114. De Souza, S.; Visco, S. J.; De Jonghe, L. C. Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 1997, 98, 57–61.

    Google Scholar 

  115. Kim, C.; Jang, I.; Kim, S.; Yoon, H.; Paik, U. Ba0.5Sr0.5Co0.8Fe0.2O3-δ/Gd0.1Ce0.9O2-δ core/shell nanofiber via one-step electrospinning for cathode of LT-SOFCs. ECS Trans. 2017, 78, 637–641.

    Google Scholar 

  116. Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

    Google Scholar 

  117. Xu, X. Y.; Xia, C. R.; Huang, S. G.; Peng, D. K. YSZ thin films deposited by spin-coating for IT-SOFCs. Ceram. Int. 2005, 31, 1061–1064.

    Google Scholar 

  118. Moon, H.; Kim, S. D.; Hyun, S. H.; Kim, H. S. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and cofiring. Int. J. Hydrogen Energy 2008, 33, 1758–1768.

    Google Scholar 

  119. Liu, Y.; Compson, C.; Liu, M. L. Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 2004, 138, 194–198.

    Google Scholar 

  120. Tsai, T.; Barnett, S. A. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 1997, 93, 207–217.

    Google Scholar 

  121. Kan, H.; Lee, H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl. Catal. B-Environ. 2010, 97, 108–114.

    Google Scholar 

  122. Leng, Y. J.; Chan, S. H.; Khor, K. A.; Jiang, S. P. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int. J. Hydrogen Energy 2004, 29, 1025–1033.

    Google Scholar 

  123. Tsai, T.; Perry, E.; Barnett, S. A. Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes. J. Electrochem. Soc. 1997, 144, L130–L132.

    Google Scholar 

  124. Kim, H. J.; Kim, M.; Neoh, K. C.; Han, G. D.; Bae, K.; Shin, J. M.; Kim, G. T.; Shim, J. H. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. J. Power Sources 2016, 327, 401–407.

    Google Scholar 

  125. Lim, H. T.; Virkar, A. V. Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. J. Power Sources 2009, 192, 267–278.

    Google Scholar 

  126. Cho, S.; Kim, Y.; Kim, J. H.; Manthiram, A.; Wang, H. Y. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim. Acta 2011, 56, 5472–5477.

    Google Scholar 

  127. Zhao, F.; Wang, Z. Y.; Liu, M. F.; Zhang, L.; Xia, C. R.; Chen, F. L. Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 2008, 185, 13–18.

    Google Scholar 

  128. Choi, S.; Yoo, S.; Kim, J.; Park, S.; Jun, A.; Sengodan, S.; Kim, J.; Shin, J.; Jeong, H. Y.; Choi, Y. et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Sci. Rep. 2013, 3, 2426.

    Google Scholar 

  129. Xia, C. R.; Chen, F. L.; Liu, M. L. Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 2001, 4, A52–A54.

    Google Scholar 

  130. Zhang, X. E.; Robertson, M.; Yick, S.; Deĉes-Petit, C.; Styles, E.; Qu, W.; Xie, Y. S.; Hui, R.; Roller, J.; Kesler, O. et al. Sm0.5Sr0.5CoO3 + Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600 °C. J. Power Sources 2006, 160, 1211–1216.

    Google Scholar 

  131. Wang, Z. C.; Weng, W. J.; Chen, K.; Shen, G.; Du, P. Y.; Han, G. R. Preparation and performance of nanostructured porous thin cathode for low-temperature solid oxide fuel cells by spin-coating method. J. Power Sources 2008, 175, 430–435.

    Google Scholar 

  132. Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H. Y.; Shin, J.; Ju, Y. W.; Han, J. W.; Kim, G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 2017, 8, 15967.

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Science Foundation (CBET-CAREER 1350623). The authors also thank the Lumigen Instrument Center at Wayne State University for the use of the X-ray diffraction (National Science Foundation MRI-1427926) and electron microscopy facilities (National Science Foundation MRI-0216084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eranda Nikolla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, J., Nikolla, E. Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Res. 12, 2081–2092 (2019). https://doi.org/10.1007/s12274-019-2375-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2375-y

Keywords

Navigation