Skip to main content
Log in

A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon with high specific capacity is deemed an ideal anode material for lithium ion batteries, which, however suffers from low cycling life due to its dramatic volume changes. Water-soluble polymer binders recently gain increasing attention by providing an eco-friendly and low-cost way in improving the cycling stability of Si-based anodes. Herein, a novel bioinspired supramolecular mineral hydrogel binder consisting of polyacrylic acid (PAA) physically crosslinked with amorphous calcium carbonate (ACC) nanoparticles is designed for high-performance anodes made from low-cost microsized Si particles. Owing to its organic-inorganic hydrophilic nature, ACC-PAA hybrid binder exhibits the reported highest modulus (~ 22 GPa) for polymer binders in electrolyte, even higher than lithiated Si species (Li15Si4, ~ 12 GPa). Together with its excellent adhesion and electrochemical stability, ACC-PAA binder can effectively suppress the pulverization of Si particles and maintain the mechanical integrity of electrodes during cycling. Therefore, even with a low binder content, the anode still shows an initial discharge capacity of 2,973 mAh·g−1 and Coulombic efficiency of 81.5%, and retains 75% at a current density of 600 mA·g−1 after 100 cycles. The present organic-inorganic hybrid mineral binder may open a new approach for designing more effective polymer binders for Si-based lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926–5940.

    Article  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  Google Scholar 

  3. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    Article  Google Scholar 

  4. Jia, J. C.; Hu, X.; Wen, Z. H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Res. 2018, 11, 1135–1145.

    Article  Google Scholar 

  5. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  Google Scholar 

  6. Luo, F.; Liu, B. N.; Zheng, J. Y.; Chu, G.; Zhong, K. F.; Li, H.; Huang, X. J.; Chen, L. Q. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 2015, 162, A2509–A2528.

    Article  Google Scholar 

  7. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

    Article  Google Scholar 

  8. Su, H. P.; Barragan, A. A.; Geng, L. X.; Long, D. H.; Ling, L. C.; Bozhilov, K. N.; Mangolini, L.; Guo, J. C. Colloidal synthesis of silicon–carbon composite material for lithium-ion batteries. Angew. Chem. 2017, 129, 10920–10925.

    Article  Google Scholar 

  9. Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

    Article  Google Scholar 

  10. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as highperformance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    Article  Google Scholar 

  11. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  12. Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

    Article  Google Scholar 

  13. Lin, W. Z.; Lian, Y. P.; Zeng, G.; Chen, Y. Y.; Wen, Z. H.; Yang, H. H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968–5977.

    Article  Google Scholar 

  14. Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Guglielmotti, V.; Rossi, M. Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 2014, 246, 167–177.

    Article  Google Scholar 

  15. Guo, S. C.; Hu, X.; Hou, Y.; Wen, Z. H. Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42084–42092.

    Article  Google Scholar 

  16. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Selfhealing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  Google Scholar 

  17. Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

    Article  Google Scholar 

  18. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

    Article  Google Scholar 

  19. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly crosslinked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8762–8767.

    Article  Google Scholar 

  20. Bie, Y. T.; Yang, J.; Nuli, Y.; Wang, J. L. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 1919–1924.

    Article  Google Scholar 

  21. Bie, Y. T.; Yang, J.; Liu, X. L.; Wang, J. L.; Nuli, Y.; Lu, W. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2899–2904.

    Article  Google Scholar 

  22. Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.

    Article  Google Scholar 

  23. Shin, D.; Park, H.; Paik, U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun. 2017, 77, 103–106.

    Article  Google Scholar 

  24. Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 16449–16457.

    Article  Google Scholar 

  25. Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

    Article  Google Scholar 

  26. Wang, L.; Liu, T. F.; Peng, X.; Zeng, W. W.; Jin, Z. Z.; Tian, W. F.; Gao, B.; Zhou, Y. H.; Chu, P. K.; Huo, K. F. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704858.

    Article  Google Scholar 

  27. Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z. N.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

    Article  Google Scholar 

  28. Zeng, W. W.; Wang, L.; Peng, X.; Liu, T. F.; Jiang, Y. Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K. F.; Zhou, Y. H. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702314.

    Article  Google Scholar 

  29. Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G. R.; Lin, Z.; Liu, G.; Zhang, S. Q. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936–8982.

    Article  Google Scholar 

  30. Yin, H.; Liu, Y.; Yu, N.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Graphene-like MoS2 nanosheets on carbon fabrics as high-performance binder-free electrodes for supercapacitors and Li-ion batteries. ACS Omega 2018, 3, 17466–17473.

    Article  Google Scholar 

  31. Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si−Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548–8549.

    Article  Google Scholar 

  32. Wang, Y. K.; Zhang, Q. L.; Li, D. W.; Hu, J. Z.; Xu, J. G.; Dang, D. Y.; Xiao, X. C.; Cheng, Y. T. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv. Energy Mater. 2018, 8, 1702578.

    Article  Google Scholar 

  33. Hertzberg, B.; Benson, J.; Yushin, G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si–Li alloy films. Electrochem. Commun. 2011, 13, 818–821.

    Article  Google Scholar 

  34. Kim, H.; Chou, C. Y.; Ekerdt, J. G.; Hwang, G. S. Structure and properties of Li−Si alloys: A first-principles study. J. Phys. Chem. C 2011, 115, 2514–2521.

    Article  Google Scholar 

  35. Yin, H.; Yu, X. X.; Yu, Y. W.; Cao, M. L.; Zhao, H.; Li, C.; Zhu, M. Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870–876.

    Article  Google Scholar 

  36. Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 2011, 107, 045503.

    Article  Google Scholar 

  37. Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102.

    Article  Google Scholar 

  38. Zhang, L.; Zhang, L. Y.; Chai, L. L.; Xue, P.; Hao, W. W.; Zheng, H. H. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 19036–19045.

    Article  Google Scholar 

  39. Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for highperformance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

    Article  Google Scholar 

  40. Park, Y.; Lee, S.; Kim, S. H.; Jang, B. Y.; Kim, J. S.; Oh, S. M.; Kim, J. Y.; Choi, N. S.; Lee, K. T.; Kim, B. S. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Adv. 2013, 3, 12625–12630.

    Article  Google Scholar 

  41. Liu, J.; Zhang, Q.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3599–3605.

    Article  Google Scholar 

  42. Luo, C.; Du, L. L.; Wu, W.; Xu, H. L.; Zhang, G. Z.; Li, S.; Wang, C. Y.; Lu, Z. G.; Deng, Y. H. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 12621–12629.

    Article  Google Scholar 

  43. Gower, L. B.; Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734.

    Article  Google Scholar 

  44. Cölfen, H. A crystal-clear view. Nat. Mater. 2010, 9, 960–961.

    Article  Google Scholar 

  45. Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

    Article  Google Scholar 

  46. Mikkelsen, A.; Engelsen, S. B.; Hansen, H. C. B.; Larsen, O.; Skibsted, L. H. Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. J. Cryst. Growth 1997, 177, 125–134.

    Article  Google Scholar 

  47. Saito, T.; Oaki, Y.; Nishimura, T.; Isogai, A.; Kato, T. Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater. Horiz. 2014, 1, 321–325.

    Article  Google Scholar 

  48. Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem., Int. Ed. 2016, 55, 11765–11769.

    Article  Google Scholar 

  49. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

    Article  Google Scholar 

  50. Lin, S. Y.; Zhong, Y. J.; Zhao, X. L.; Sawada, T.; Li, X. M.; Lei, W. H.; Wang, M. R.; Serizawa, T.; Zhu, H. W. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater. 2018, 30, 1803004.

    Article  Google Scholar 

  51. Li, A.; Jia, Y. F.; Sun, S. T.; Xu, Y. S.; Minsky, B. B.; Stuart, M. A. C.; Cölfen, H.; von Klitzing, R.; Guo, X. H. Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic-inorganic hybrid adhesive. ACS Appl. Mater. Interfaces 2018, 10, 10471–10479.

    Article  Google Scholar 

  52. Bromberg, L.; Temchenko, M.; Alakhov, V.; Hatton, T. A. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int. J. Pharm. 2004, 282, 45–60.

    Article  Google Scholar 

  53. Li, D. W.; Wang, Y. K.; Hu, J. Z.; Lu, B.; Dang, D. Y.; Zhang, J. Q.; Cheng, Y. T. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J. Power Sources 2018, 387, 9–15.

    Article  Google Scholar 

  54. Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. Highareal- capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

    Article  Google Scholar 

  55. McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034–6041.

    Article  Google Scholar 

  56. Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

    Article  Google Scholar 

  57. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 51733003 and 51873035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengtong Sun, Dong Yang or Peiyi Wu.

Electronic supplementary material

12274_2019_2359_MOESM1_ESM.pdf

A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Chen, X., Sun, S. et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 12, 1121–1127 (2019). https://doi.org/10.1007/s12274-019-2359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2359-y

Keywords

Navigation