Skip to main content
Log in

Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling the cellular interaction and internalization of polymer-modified nanoparticles (NPs) is of central importance to the development of promising nanomedicines. Here, we describe the use of synthetic polypeptides for NP surface coating and regulation of their cellular uptake behaviors by simply switching the conformation and anchoring orientation. Our results show that gold NPs (AuNPs) coated with a helical poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)esteryl L-glutamate) (L-P(EG3Glu)50) from the C-terminus ((L-C)-AuNPs) exhibit greater zeta potential and more cellular uptake (2.0–5.5 fold higher) than those coated with the same polypeptide but anchored from the N-terminus ((L-N)-AuNPs), or from both the C- and N-terminus at a 1/1 molar ratio ((L-C/L-N)-AuNPs). A similar orientation-regulated cellular internalization pattern is observed in D-P(EG3Glu)50 but not the unstructured DL-P(EG3Glu)50-modified AuNPs, suggesting an important and universal role of the helix-derived macrodipole in cellular uptake. Moreover, this orientation-governed internalization is successfully reproduced in P(EG3Glu)50-coated gold nanorods (AuNRs), and applied to the design of doxorubicin-loaded polypeptide micelles. Simulation study offers time-resolved insights regarding the NP–membrane interactions and membrane remodeling. Thus, our study provides a delicate way of regulating the surface chemistry of NPs and the subsequent NP–cell interactions. Moreover, the results highlight the uniqueness of polypeptides in NP surface engineering, and urge a more careful consideration on the polymer orientation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779.

    Article  Google Scholar 

  2. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.

    Article  Google Scholar 

  3. Kim, D.; Kim, J.; Park, Y. I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018, 4, 324–336.

    Article  Google Scholar 

  4. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

    Article  Google Scholar 

  5. Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.

    Article  Google Scholar 

  6. Björnmalm, M.; Thurecht, K. J.; Michael, M.; Scott, A. M.; Caruso, F. Bridging bio-nano science and cancer nanomedicine. ACS Nano 2017, 11, 9594–9613.

    Article  Google Scholar 

  7. Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381.

    Google Scholar 

  8. Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

    Article  Google Scholar 

  9. Li, S. X.; Feng, X. R.; Wang, J. X.; He, L.; Wang, C. X.; Ding, J. X.; Chen, X. S. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res. 2018, 11, 5769–5786.

    Article  Google Scholar 

  10. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

    Article  Google Scholar 

  11. Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322–1337.

    Article  Google Scholar 

  12. Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12–21.

    Article  Google Scholar 

  13. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticlemediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.

    Article  Google Scholar 

  14. Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.

    Article  Google Scholar 

  15. Mosquera, J.; García, I.; Liz-Marzán, L. M. Cellular uptake of nanoparticles versus small molecules: A matter of size. Acc. Chem. Res. 2018, 51, 2305–2313.

    Article  Google Scholar 

  16. Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

    Article  Google Scholar 

  17. Li, Y.; Kröger, M.; Liu, W. K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale 2015, 7, 16631–16646.

    Article  Google Scholar 

  18. Verma, A.; Uzun, O.; Hu, Y. H.; Hu, Y.; Han, H. S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588–595.

    Article  Google Scholar 

  19. Xue, J. X.; Guan, Z.; Lin, J. P.; Cai, C. H.; Zhang, W. J.; Jiang, X. Q. Cellular internalization of rod-like nanoparticles with various surface patterns: Novel entry pathway and controllable uptake capacity. Small 2017, 13, 1604214.

    Article  Google Scholar 

  20. Mochida, Y.; Cabral, H.; Miura, Y.; Albertini, F.; Fukushima, S.; Osada, K.; Nishiyama, N.; Kataoka, K. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano 2014, 8, 6724–6738.

    Article  Google Scholar 

  21. Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S. J. H.; Rivera_Gil, P.; Montenegro, J. M.; Braeckmans, K.; Müllen, K. et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263.

    Google Scholar 

  22. Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.

    Article  Google Scholar 

  23. Wang, X. Y.; Wang, M. Z.; Lei, R.; Zhu, S. F.; Zhao, Y. L.; Chen, C. Y. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 2017, 11, 4606–4616.

    Article  Google Scholar 

  24. Sun, J. S.; Zhang, L.; Wang, J. L.; Feng, Q.; Liu, D. B.; Yin, Q. F.; Xu, D. Y.; Wei, Y. J.; Ding, B. Q.; Shi, X. H. et al. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 2015, 27, 1402–1407.

    Google Scholar 

  25. Borase, T.; Heise, A. Hybrid nanomaterials by surface grafting of synthetic polypeptides using N-carboxyanhydride (NCA) polymerization. Adv. Mater. 2016, 28, 5725–5731.

    Article  Google Scholar 

  26. Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.

    Article  Google Scholar 

  27. Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem. Soc. Rev. 2015, 44, 612–622.

    Article  Google Scholar 

  28. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.

    Article  Google Scholar 

  29. Guyon, L.; Lepeltier, E.; Passirani, C. Self-assembly of peptide-based nanostructures: Synthesis and biological activity. Nano Res. 2018, 11, 2315–2335.

    Article  Google Scholar 

  30. Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci. 2000, 21, 99–103.

    Article  Google Scholar 

  31. Petsko, G. A.; Ringe, D. Protein Structure and Function; New Science Press: London, 2004.

    Google Scholar 

  32. Galoppini, E.; Fox, M. A. Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric a-helical peptides. J. Am. Chem. Soc. 1996, 118, 2299–2300.

    Article  Google Scholar 

  33. Song, Z. Y.; Fu, H. L.; Wang, R. B.; Pacheco, L. A.; Wang, X.; Lin, Y.; Cheng, J. J. Secondary structures in synthetic polypeptides from Ncarboxyanhydrides: Design, modulation, association, and material applications. Chem. Soc. Rev. 2018, 47, 7401–7425.

    Article  Google Scholar 

  34. Niwa, M.; Kuwagaki, Y.; Yamaguchi, S.; Higashi, N. Effect of the helix macrodipole on surface-initiated N-carboxyanhydride polymerization on gold. Angew. Chem. 2003, 115, 1883–1885.

    Article  Google Scholar 

  35. Worley, C. G.; Linton, R. W.; Samulski, E. T. Electric-field-enhanced selfassembly of.alpha.-helical polypeptides. Langmuir 1995, 11, 3805–3810.

    Article  Google Scholar 

  36. Niwa, M.; Morikawa, M. A.; Higashi, N. Controllable orientation of helical poly(L-glutamic acid) rods through macrodipole interaction on gold surfaces and vectorial electron transfer. Angew. Chem., Int. Ed. 2000, 39, 960–963.

    Article  Google Scholar 

  37. Jaworek, T.; Neher, D.; Wegner, G.; Wieringa, R. H.; Schouten, A. J. Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. Science 1998, 279, 57–60.

    Article  Google Scholar 

  38. Chang, Y. C.; Frank, C. W.; Forstmann, G. G.; Johannsmann, D. Quadrupolar and polar anisotropy in end-grafted a-helical poly(?-benzyl-L-glutamate) on solid substrates. J. Chem. Phys. 1999, 111, 6136–6143.

    Article  Google Scholar 

  39. Whitesell, J. K.; Chang, H. K. Surface oriented polymers for nonlinear optics. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1994, 240, 251–258.

    Article  Google Scholar 

  40. Zhang, C.; Yuan, J. S.; Lu, J. H.; Hou, Y. Q.; Xiong, W.; Lu, H. From neutral to zwitterionic poly(a-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation. Biomaterials 2018, 178, 728–737.

    Article  Google Scholar 

  41. Chen, C. Y.; Wang, Z. H.; Li, Z. B. Thermoresponsive polypeptides from PEGylated poly-L-glutamates. Biomacromolecules 2011, 12, 2859–2863.

    Article  Google Scholar 

  42. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

    Article  Google Scholar 

  43. Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

    Article  Google Scholar 

  44. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    Article  Google Scholar 

  45. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.

    Article  Google Scholar 

  46. Yang, K.; Ma, Y. Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 2010, 5, 579–583.

    Article  Google Scholar 

  47. Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem. 2018, 9, 1517–1529.

    Article  Google Scholar 

  48. Li, G. Z.; Cheng, G.; Xue, H.; Chen, S. F.; Zhang, F. B.; Jiang, S. Y. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008, 29, 4592–4597.

    Article  Google Scholar 

  49. Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718.

    Article  Google Scholar 

  50. Matsuura, K.; Ohno, K.; Kagaya, S.; Kitano, H. Carboxybetaine polymerprotected gold nanoparticles: High dispersion stability and resistance against non-specific adsorption of proteins. Macromol. Chem. Phys. 2007, 208, 862–873.

    Article  Google Scholar 

  51. Yu, X. F.; Liu, Z. H.; Janzen, J.; Chafeeva, I.; Horte, S.; Chen, W.; Kainthan, R. K.; Kizhakkedathu, J. N.; Brooks, D. E. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 2012, 11, 468–476.

    Article  Google Scholar 

  52. Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.

    Article  Google Scholar 

  53. Tian, F. L.; Zhang, X. R.; Dong, W. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation. Phys. Rev. E 2014, 90, 052701.

    Article  Google Scholar 

  54. Yue, T. T.; Zhang, X. R. Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter 2011, 7, 9104–9112.

    Article  Google Scholar 

  55. Hou, Y. Q.; Zhou, Y.; Wang, H.; Sun, J. L.; Wang, R. J.; Sheng, K.; Yuan, J. S.; Hu, Y. L.; Chao, Y.; Liu, Z.; Lu, H. Therapeutic protein PEPylation: The helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation. ACS C ent. Sci., in press, DOI: 10.1021/acscentsci.8b00548.

Download references

Acknowledgments

Financial supports from the National Key Research and Development Program of China (No. 2016YFA0201400) and the National Natural Science Foundation of China (No. 21722401) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingdong Sun, Xinghua Shi or Hua Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, J., Tian, F. et al. Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Res. 12, 889–896 (2019). https://doi.org/10.1007/s12274-019-2319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2319-6

Keywords

Navigation