Skip to main content
Log in

Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

CO2 should be converted into chemical-fuels, and to reduce H2O to H2 over SrTiO3 (STO) owing to its negative conduction band position vs. NHE. Herein a novel B and Fe co-doped SrTiO3 (B, F-STO) photocatalyst was successfully fabricated via a single-step sol-hydrothermal process. Various experiments confirmed that B and Fe are effectively doped into the STO matrix. Boron substituted oxygen anions, while Fe substituted Ti cations. UV–visible diffuse reflectance spectra (UV–vis DRS) and valence-band X-ray photoelectron spectroscopy (XPS) spectra confirmed that the band gap of STO significantly reduced from 3.4 to 1.9 eV upon co-doping with B and Fe. Hence, the B, F-STO photocatalyst exhibits more absorption (λ ≤ 650 nm) compared to pure STO (λ ≤ 360 nm). Further, from photoluminescence spectra, fluorescence spectra, and photoelectrochemical measurements, charge separation in STO is considerably enhanced by co-doping B and Fe. This resulted in the improved UV–vis light catalytic activities for CO2 conversion to CH4 and CO and H2O splitting to evolve H2. The amounts of CH4 and CO produced over B, F-STO are ∼ 17.2 and 21 μmol, respectively, about 5-fold enhanced compared to that of STO (∼ 3.4 μmol CH4 and 5.2 μmol CO), and the calculated quantum efficiency at λ = 420 nm is ∼ 2.16%. Similarly, the amount of H2 produced over B, F-STO is ∼ 61 μmol, about 6.7-fold enhanced compared to that over STO (9 μmol), and the calculated quantum efficiency at λ = 420 nm is ∼ 2.12%. This work provides feasible routes to fabricate highly efficient SrTiO3-based nanophotocatalysts for solar-fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong, Z.; Lei, Z.; Ma, S. M.; Chen, X. X.; Gong, B. G.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G.; Wu, J. C. S. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Appl. Catal. B 2017, 219, 412–424.

    Article  Google Scholar 

  2. Kim, A.; Debecker, D. P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Appl. Catal. B 2018, 220, 615–625.

    Article  Google Scholar 

  3. Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Nikzad, M.; Wang, J.; Yu, A. M. Two-and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J. Mater. Chem. A 2018, 6, 702–734.

    Article  Google Scholar 

  4. Yang, G.; Chen, D. M.; Ding, H.; Feng, J. J.; Zhang, J. Z.; Zhu, Y. F.; Hamid, S.; Bahnemann, D. W. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl. Catal. B 2017, 219, 611–618.

    Article  Google Scholar 

  5. Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503.

    Article  Google Scholar 

  6. Sahara, G.; Ishitani, O. Efficient photocatalysts for CO2 reduction. Inorg. Chem. 2015, 54, 5096–5104.

    Article  Google Scholar 

  7. Bi, Y. Q.; Ehsan, M. F.; Huang, Y.; Jin, J. R.; He, T. Synthesis of Cr-doped SrTiO3 photocatalyst and its application in visible-light-driven transformation of CO2 into CH4. J. CO2 Util. 2015, 12, 43–48.

    Article  Google Scholar 

  8. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  Google Scholar 

  9. Ida, S.; Ishihara, T. Recent progress in two-dimensional oxide photocatalysts for water splitting. J. Phys. Chem. Lett. 2014, 5, 2533–2542.

    Article  Google Scholar 

  10. Cao, S. W.; Yu, J. G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107.

    Article  Google Scholar 

  11. Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6097.

    Article  Google Scholar 

  12. Hong, E.; Kim, D.; Kim, J. H. Heterostructured metal sulfide (ZnS–CuS–CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting. J. Ind. Eng. Chem. 2014, 20, 3869–3874.

    Article  Google Scholar 

  13. Shen, S. H.; Chen, X. B.; Ren, F.; Kronawitter, C. X.; Mao, S. S.; Guo, L. J. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res. Lett. 2011, 6, 290.

    Article  Google Scholar 

  14. Wang, P.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813–9825.

    Article  Google Scholar 

  15. Yu, C. L.; Cao, F. F.; Li, G.; Wei, R. F.; Yu, J. C.; Jin, R. C.; Fan, Q. Z.; Wang, C. Y. Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Sep. Purif. Technol. 2013, 120, 110–122.

    Article  Google Scholar 

  16. Shi, J. W.; Guo, L. J. ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mater. Int. 2012, 22, 592–615.

    Article  Google Scholar 

  17. Ding, J. J.; Bao, J.; Sun, S.; Luo, Z. L.; Gao, C. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem. 2009, 11, 523–526.

    Article  Google Scholar 

  18. Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022.

    Article  Google Scholar 

  19. Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 2012, 6, 7420–7426.

    Article  Google Scholar 

  20. Sakata, Y.; Miyoshi, Y.; Maeda, T.; Ishikiriyama, K.; Yamazaki, Y.; Imamura, H.; Ham, Y.; Hisatomi, T.; Kubota, J.; Yamakata, A.; Domen, K. Photocatalytic property of metalion added SrTiO3 to overall H2O splitting. Appl. Catal. A 2016, 521, 227–232.

    Article  Google Scholar 

  21. Karaphun, A.; Hunpratub, S.; Swatsitang, E. Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method. Microelectron. Eng. 2014, 126, 42–48.

    Article  Google Scholar 

  22. Souza, A. E.; Santos, G. T. A.; Barra, B. C.; Macedo Jr, W. D.; Teixeira, S. R.; Santos, C. M.; Senos, A. M. O. R.; Amaral, L.; Longo, E. Photoluminescence of SrTiO3: Influence of particle size and morphology. Cryst. Growth Des. 2012, 12, 5671–5679.

    Article  Google Scholar 

  23. Kim, D. H.; Bi, L.; Aimon, N. M.; Jiang, P.; Dionne, G. F.; Ross, C. A. Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates. ACS Comb. Sci. 2012, 14, 179–190.

    Article  Google Scholar 

  24. Piskunov, S.; Lisovski, O.; Begens, J.; Bocharov, D.; Zhukovskii, Y. F.; Wessel, M.; Spohr, E. C-, N-, S-, and Fedoped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: Prediction from first principles. J. Phys. Chem. C 2015, 119, 18686–18696.

    Article  Google Scholar 

  25. Guo, Y. T.; Qiu, X. W.; Dong, H.; Zhou, X. Trends in non-metal doping of the SrTiO3 surface: A hybrid density functional study. Phys. Chem. Chem. Phys. 2015, 17, 21611–21621.

    Article  Google Scholar 

  26. Li, L.; Yang, Y. L.; Liu, X. R.; Fan, R. Q.; Shi, Y.; Li, S.; Zhang, L. Y.; Fan, X.; Tang, P. X.; Xu, R.; Zhang, W. Z.; Wang, Y. Z.; Ma, L. Q. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB. Appl. Surf. Sci. 2013, 265, 36–40.

    Article  Google Scholar 

  27. In, S.; Orlov, A.; Berg, R.; García, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 2007, 129, 13790–13791.

    Article  Google Scholar 

  28. Maldonado, F.; Maza, L.; Stashans, A. Electronic properties of Cr-, B-doped and codoped SrTiO3. J. Phys. Chem. Solids 2017, 100, 1–8.

    Article  Google Scholar 

  29. Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2–xBx under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782–4783.

    Article  Google Scholar 

  30. Su, Y. L.; Han, S.; Zhang, X. W.; Chen, X. Q.; Lei, L. C. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Mater. Chem. Phys. 2008, 110, 239–246.

    Article  Google Scholar 

  31. Yu, Z. W.; Shi, P.; Wu, X. Q.; Ren, W. Structural and electrical properties of SrFexTi1−xO3 (x = 0.001, 0.005 and 0.01) thin films prepared by pulsed laser depositions. Ceram. Int. 2015, 41, S223–S227.

    Article  Google Scholar 

  32. Taibl, S.; Fafilek, G.; Fleig, J. Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: Inductive loops as a trace of ion motion. Nanoscale 2016, 8, 13954–13966.

    Article  Google Scholar 

  33. Da Silva, L. F.; Bernardi, M. I. B.; Maia, L. J. Q.; Frigo, G. J. M.; Mastelaro, V. R. Synthesis and thermal decomposition of SrTi1−x FexO3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method. J. Therm. Anal. Calorim. 2009, 97, 173–177.

    Article  Google Scholar 

  34. Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001). Appl. Surf. Sci. 2017, 393, 74–81.

    Article  Google Scholar 

  35. Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J.; Fan, F. T.; Li, R. G.; Li, C. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463–2469.

    Article  Google Scholar 

  36. Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (·OH). Chem. Rev. 2015, 115, 13051–13092.

    Article  Google Scholar 

  37. Li, P.; Liu, C. B.; Wu, G. L.; Heng, Y.; Lin, S.; Ren, A.; Lv, K. H.; Xiao, L. S.; Shi, W. D. Solvothermal synthesis and visible light-driven photocatalytic degradation for tetracycline of Fe-doped SrTiO3. RSC Adv. 2014, 4, 47615–67624.

    Article  Google Scholar 

  38. Da Silva, L. F.; M’Peko, J. C.; Andrés, J.; Beltrán, A.; Gracia, L.; Bernardi, M. I. B.; Mesquita, A.; Antonelli, E.; Moreira, M. L.; Mastelaro, V. R. Insight into the effects of Fe addition on the local structure and electronic properties of SrTiO3. J. Phys. Chem. C 2014, 118, 4930–4940.

    Article  Google Scholar 

  39. Xie, T. H.; Sun, X. Y.; Lin, J. Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)−O−Fe(II) formed in Fe-Doped SrTiO3. J. Phys. Chem. C 2008, 112, 9753–9759.

    Article  Google Scholar 

  40. Yu, H.; Wang, J. J.; Yan, S. C.; Yu, T.; Zou, Z. G. Elements doping to expand the light response of SrTiO3. J. Photochem. Photobiol. A 2014, 275, 65–71.

    Article  Google Scholar 

  41. Tu, Y. F.; Fu, Q. M.; Niu, X. J.; Sang, J. P.; Tan, Z. J.; Zheng, G.; Zou, X. W. Fabrication and photocatalytic property of ZnO/SrTiO3 core/shell nanorod arrays. Cryst. Res. Technol. 2013, 48, 138–144.

    Article  Google Scholar 

  42. Jing, F. Y.; Zhang, D. Z.; Li, F.; Zhou, J. R.; Sun, D. M.; Ruan, S. P. High performance ultraviolet detector based on SrTiO3/TiO2 heterostructure fabricated by two steps in situ hydrothermal method. J. Alloys Compd. 2015, 650, 97–101.

    Article  Google Scholar 

  43. Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem.—Eur. J. 2012, 18, 7543–7551.

    Article  Google Scholar 

  44. Liu, D. Q.; Zhang, Y. W.; Kang, H. J.; Li, J. L.; Chen, Z. N.; Wang, T. M. Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 2018, 38, 807–811.

    Article  Google Scholar 

  45. Yu, J.; Si, Z. C.; Chen, L.; Wu, X. D.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphatecontaining Ce0.75Zr0.25O2 solids. Appl. Catal. B 2015, 163, 223–232.

    Article  Google Scholar 

  46. Wen, X. J.; Niu, C. G.; Zhang, L.; Liang, C.; Zeng, G. M. An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts. J. Catal. 2017, 356, 283–299.

    Article  Google Scholar 

  47. Kiss, B.; Manning, T. D.; Hesp, D.; Didier, C.; Taylor, A.; Pickup, D. M.; Chadwick, A. V.; Allison, H. E.; Dhanak, V. R.; Claridge, J. B.; Darwent, J. R.; Rosseinsky, M. J. Nano-structured rhodium doped SrTiO3-visible light activated photocatalyst for water decontamination. Appl. Catal. B 2017, 206, 547–555.

    Article  Google Scholar 

  48. Guan, X. J.; Guo, L. J. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS Catal. 2014, 4, 3020–3026.

    Article  Google Scholar 

  49. Humayun, M.; Sun, N.; Raziq, F.; Zhang, X. L.; Yan, R.; Li, Z. J.; Qu, Y.; Jing, L. Q. Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B 2018, 231, 23–33.

    Article  Google Scholar 

  50. Humayun, M.; Zada, A.; Li, Z. J.; Xie, M. Z.; Zhang, X. L.; Qu, Y.; Raziq, F.; Jing, L. Q. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 2016, 180, 219–226.

    Article  Google Scholar 

  51. Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z. J.; Zhang, X. L.; Jing, L. Q. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 2016, 50, 13600–13610.

    Article  Google Scholar 

  52. Yang, Y.; Cheng, Y. F. Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection. Electrochim. Acta 2017, 253, 134–141.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 11574106, 61771448 and 51635007), the China Postdoctoral Science Foundation (No. 2017M622404), and the Fundamental Research Projects of Shenzhen City (No. JCYJ20150831202835225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humayun, M., Xu, L., Zhou, L. et al. Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution. Nano Res. 11, 6391–6404 (2018). https://doi.org/10.1007/s12274-018-2164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2164-z

Keywords

Navigation