Skip to main content
Log in

Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 May 2020

This article has been updated

Abstract

Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As aconsequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of–21.9 mA·cm−2 at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use insolar-driven water splitting, which may simplify fabrication procedures andpotentially reduce production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 22 May 2020

    The name of the first author was unfortunately misspelled

References

  1. Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sust. Energ. Rev.2000, 4, 157–175.

    Article  Google Scholar 

  2. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev.2010, 110, 6446–6473.

    Article  CAS  Google Scholar 

  3. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev.2010, 110, 6474–6502.

    Article  CAS  Google Scholar 

  4. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  5. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science2011, 334, 645–648.

    Article  CAS  Google Scholar 

  6. Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev.2014, 114, 8662–8719.

    Article  CAS  Google Scholar 

  7. Candea, R. M.; Kastner, M.; Goodman, R.; Hickok, N. Photoelectrolysis of water-Si in salt-water. J. Appl. Phys.1976, 47, 2724–2726.

    Article  CAS  Google Scholar 

  8. Thalluri, S. M.; Borme, J.; Xiong, D. H.; Xu, J. Y.; Li, W.; Amorim, I.; Alpuim, P.; Gaspar, J.; Fonseca, H.; Qiao, L. et al. Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: An investigation on the effect of wire diameter, length and inter-wire spacing. Sustainable Energy Fuels2018. DOI: 10.1039/C7SE00591A.

    Google Scholar 

  9. Bao, X. Q.; Petrovykh, D. Y.; Alpuim, P.; Stroppa, D. G.; Guldris, N.; Fonseca, H.; Costa, M.; Gaspar, J.; Jin, C. H.; Liu, L. F. Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire arrays for efficient photoelectrochemical water reduction. Nano Energy2015, 16, 130–142.

    Article  CAS  Google Scholar 

  10. Yuhas, B. D.; Smeigh, A. L.; Samuel, A. P. S.; Shim, Y.; Bag, S.; Douvalis, A. P.; Wasielewski, M. R.; Kanatzidis, M. G. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. J. Am. Chem. Soc.2011, 133, 7252–7255.

    Article  CAS  Google Scholar 

  11. Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano2016, 10, 2342–2348.

    Article  CAS  Google Scholar 

  12. Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale2016, 8, 5737–5749.

    Article  CAS  Google Scholar 

  13. Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res.2015, 8, 281–287.

    Article  CAS  Google Scholar 

  14. Xiong, D. H.; Zhang, Q. Q.; Thalluri, S. M.; Xu, J. Y.; Li, W.; Fu, X. L.; Liu, L. F. One-step fabrication of monolithic electrodes comprising Co9S8 particles supported on cobalt foam for efficient and durable oxygen evolution reaction. Chem.-Eur. J.2017, 23, 8749–8755.

    Article  CAS  Google Scholar 

  15. Chen, C. J.; Yang, K. C.; Basu, M.; Lu, T. H.; Lu, Y. R.; Dong, C. L.; Hu, S. F.; Liu, R. S. Wide range pH-tolerable silicon@pyrite cobalt dichalcogenide microwire array photoelectrodes for solar hydrogen evolution. ACS Appl. Mater. Interfaces2016, 8, 5400–5407.

    Article  CAS  Google Scholar 

  16. Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. J. Power Sources2017, 366, 105–114.

    Article  CAS  Google Scholar 

  17. Wang, H. M.; Naghadeh, S. B.; Li, C. H.; Ying, L.; Allen, A. L.; Zhang, J. Z. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci. China Mater.2018. DOI: 10.1007/s40843-017-9172-x.

    Google Scholar 

  18. Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. X.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res.2016, 9, 2284–2293.

    Article  CAS  Google Scholar 

  19. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2013, 135, 9267–9270.

    Article  CAS  Google Scholar 

  20. Wang, X. G.; Kolen’ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed.2015, 54, 8188–8192.

    Article  CAS  Google Scholar 

  21. Roske, C. W.; Popczun, E. J.; Seger, B.; Read, C. G.; Pedersen, T.; Hansen, O.; Vesborg, P. C. K.; Brunschwig, B. S.; Schaak, R. E.; Chorkendorff, I. et al. Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g). J. Phys. Chem. Lett.2015, 6, 1679–1683.

    Article  CAS  Google Scholar 

  22. Bao, X. Q.; Cerqueira, M. F.; Alpuim, P.; Liu, L. F. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chem. Commun.2015, 51, 10742–10745.

    Article  CAS  Google Scholar 

  23. Hellstern, T. R.; Benck, J. D.; Kibsgaard, J.; Hahn, C.; Jaramillo, T. F. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater.2016, 6, 1501758.

    Article  CAS  Google Scholar 

  24. Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater.2016, 26, 4067–4077.

    Article  CAS  Google Scholar 

  25. Li, W.; Gao, X. F.; Wang, X. G.; Xiong, D. H.; Huang, P. P.; Song, W. G.; Bao, X. Q.; Liu, L. F. From water reduction to oxidation: Janus Co-Ni-P nanowires as high-efficiency and ultrastable electrocatalysts for over 3,000 h water splitting. J. Power Sources2016, 330, 156–166.

    Article  CAS  Google Scholar 

  26. Zhang, Y. T.; Chao, S. J.; Wang, X. B.; Han, H. J.; Bai, Z. Y.; Yang, L. Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochim. Acta2017, 246, 380–390.

    Article  CAS  Google Scholar 

  27. Li, W.; Xiong, D. H.; Gao, X. F.; Song, W. G.; Xia, F.; Liu, L. F. Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today2017, 287, 122–129.

    Article  CAS  Google Scholar 

  28. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun.2015, 6, 6512.

    Article  CAS  Google Scholar 

  29. Ma, B. J.; Xu, H. J.; Lin, K. Y.; Li, J.; Zhan, H. J.; Liu, W. Y.; Li, C. Mo2C as non-noble metal Co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. ChemSusChem2016, 9, 820–824.

    Article  CAS  Google Scholar 

  30. Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun.2016, 7, 13216.

    Article  CAS  Google Scholar 

  31. Yang, Y.; Wang, M.; Zhang, P. L.; Wang, W. H.; Han, H. X.; Sun, L. C. Evident enhancement of photoelectrochemical hydrogen production by electroless deposition of M-B (M = Ni, Co) catalysts on silicon nanowire arrays. ACS Appl. Mater. Interfaces2016, 8, 30143–30151.

    Article  CAS  Google Scholar 

  32. Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed.2012, 51, 12703–12706.

    Article  CAS  Google Scholar 

  33. Shalom, M.; Ressnig, D.; Yang, X. F.; Clavel, G.; Fellinger, T. P.; Antonietti, M. Nickel nitride as an efficient electrocatalyst for water splitting. J. Mater. Chem. A2015, 3, 8171–8177.

    Article  CAS  Google Scholar 

  34. Bae, D.; Seger, B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev.2017, 46, 1933–1954.

    Article  CAS  Google Scholar 

  35. Chandrasekaran, S.; Nann, T.; Voelcker, N. H. Nanostructured silicon photoelectrodes for solar water electrolysis. Nano Energy2015, 17, 308–322.

    Article  CAS  Google Scholar 

  36. Dalchiele, E. A.; Martin, F.; Leinen, D.; Marotti, R. E.; Ramos-Barrado, J. R. Single-crystalline silicon nanowire array-based photoelectrochemical cells. J. Electrochem. Soc.2009, 156, K77–K81.

    Article  CAS  Google Scholar 

  37. Jung, J. Y.; Choi, M. J.; Zhou, K. Y.; Li, X. P.; Jee, S. W.; Um, H. D.; Park, M. J.; Park, K. T.; Bang, J. H.; Lee, J. H. Photoelectrochemical water splitting employing a tapered silicon nanohole array. J. Mater. Chem. A2014, 2, 833–842.

    Article  CAS  Google Scholar 

  38. Zhang, B. C.; Wang, H.; He, L.; Duan, C. Y.; Li, F.; Ou, X. M.; Sun, B. Q.; Zhang, X. H. The diameter-dependent photoelectrochemical performance of silicon nanowires. Chem. Commun.2016, 52, 1369–1372.

    Article  CAS  Google Scholar 

  39. Sim, U.; Jeong, H. Y.; Yang, T. Y.; Nam, K. T. Nanostructural dependence of hydrogen production in silicon photocathodes. J. Mater. Chem. A2013, 1, 5414–5422.

    Article  CAS  Google Scholar 

  40. Bazri, B.; Lin, Y. C.; Lu, T. H.; Chen, C. J.; Kowsari, E.; Hu, S. F.; Liu, R. S. A heteroelectrode structure for solar water splitting: Integrated cobalt ditelluride across a TiO2-passivated silicon microwire array. Catal. Sci. Technol.2017, 7, 1488–1496.

    Article  CAS  Google Scholar 

  41. Choi, S. K.; Piao, G. X.; Choi, W.; Park, H. Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes. Appl. Catal. B-Environ.2017, 217, 615–621.

    Article  CAS  Google Scholar 

  42. Huang, Z. P.; Wang, C. F.; Pan, L.; Tian, F.; Zhang, X. X.; Zhang, C. Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy2013, 2, 1337–1346.

    Article  CAS  Google Scholar 

  43. Basu, M.; Zhang, Z. W.; Chen, C. J.; Chen, P. T.; Yang, K. C.; Ma, C. G.; Lin, C. C.; Hu, S. F.; Liu, R. S. Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 6211–6216.

    Article  CAS  Google Scholar 

  44. Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc.2013, 135, 1057–1064.

    Article  CAS  Google Scholar 

  45. Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production Nano Research using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode. Angew. Chem., Int. Ed.2012, 51, 9128–9131.

    Article  CAS  Google Scholar 

  46. Bae, D.; Shayestehaminzadeh, S.; Thorsteinsson, E. B.; Pedersen, T.; Hansen, O.; Seger, B.; Vesborg, P. C. K.; Olafsson, S.; Chorkendorff, I. Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media. Sol. Energy Mater. Sol. Cell2016, 144, 758–765.

    Article  CAS  Google Scholar 

  47. Bao, X. Q.; Liu, L. F. Improved photo-stability of silicon nanobelt arrays by atomic layer deposition for efficient photocatalytic hydrogen evolution. J. Power Sources2014, 268, 677–682.

    Article  CAS  Google Scholar 

  48. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc.2014, 136, 7587–7590.

    Article  CAS  Google Scholar 

  49. Callejas, J. F.; Read, C. G.; Popczun, E. J.; McEnaney, J. M.; Schaak, R. E. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem. Mater.2015, 27, 3769–3774.

    Article  CAS  Google Scholar 

  50. Choi, S. K.; Chae, W. S.; Song, B.; Cho, C. H.; Choi, J.; Han, D. S.; Choi, W.; Park, H. Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride. J. Mater. Chem. A2016, 4, 14008–14016.

    Article  CAS  Google Scholar 

  51. Zhang, C. T.; Pu, Z. H.; Amiinu, I. S.; Zhao, Y. F.; Zhu, J. W.; Tang, Y. F.; Mu, S. C. Co2P quantum dot embedded N,P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale2018, 10, 2902–2907.

    Article  CAS  Google Scholar 

  52. Doan-Nguyen, V. V. T.; Zhang, S.; Trigg, E. B.; Agarwal, R.; Li, J.; Su, D.; Winey, K. I.; Murray, C. B. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano2015, 9, 8108–8115.

    Article  CAS  Google Scholar 

  53. Blanchard, P. E. R.; Grosvenor, A. P.; Cavell, R. G.; Mar, A. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chem. Mater.2008, 20, 7081–7088.

    Article  CAS  Google Scholar 

  54. Huang, Z. P.; Zhong, P.; Wang, C. F.; Zhang, X. X.; Zhang, C. Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl. Mater. Interfaces2013, 5, 1961–1966.

    Article  CAS  Google Scholar 

  55. Sim, U.; Moon, J.; An, J.; Kang, J. H.; Jerng, S. E.; Moon, J.; Cho, S. P.; Hong, B. H.; Nam, K. T. N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci.2015, 8, 1329–1338.

    Article  CAS  Google Scholar 

  56. Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater.2013, 12, 562–568.

    Article  CAS  Google Scholar 

  57. Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science2014, 344, 1005–1009.

    Article  CAS  Google Scholar 

  58. Erlebacher, J. An atomistic description of dealloying-porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc.2004, 151, C614–C626.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT–The Portuguese Foundation for Science and Technology, under the project “PTDC/ CTM-ENE/2349/2014” (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/21102/28/12/2016/S). L. F. Liu acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Qiao acknowledges the financial support of the Ministry of Science and Technology of China (Grant Agreement No. 2016YFE0132400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Liu.

Electronic supplementary material

Supplementary material, approximately 1.13 MB.

12274_2018_2070_MOESM2_ESM.pdf

Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalluri, S.M., Borme, J., Yu, K. et al. Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Res. 11, 4823–4835 (2018). https://doi.org/10.1007/s12274-018-2070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2070-4

Keywords

Navigation