Skip to main content
Log in

MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hybrid or composite heterostructured electrode materials have been widely studied for their potential application in electrochemical energy storage. Whereas their physical or chemical properties could be affected significantly by modulating the heterogeneous interface, the underlying mechanisms are not yet fully understood. In this work, we fabricated an electrochemical energy storage device with a MoS2 nanosheet/MnO2 nanowire heterostructure and designed two charge/discharge channels to study the effect of the heterogeneous interface on the energy storage performances. Electrochemical measurements show that a capacity improvement of over 50% is achieved when the metal current collector was in contact with the MnO2 instead of the MoS2 side. We propose that this enhancement is due to the unidirectional conductivity of the MoS2/MnO2 heterogeneous interface, resulting from the unimpeded electrical transport in the MnO2-MoS2 channel along with the blocking effect on the electron transport in the MoS2-MnO2 channel, which leads to reaction kinetics optimization. The present study thus provides important insights that will improve our understanding of heterostructured electrode materials for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palacín, M. R.; De Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

    Article  Google Scholar 

  2. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.

    Article  Google Scholar 

  3. Xiong, Q. Q.; Tu, J. P.; Xia, X. H.; Zhao, X. Y.; Gu, C. D.; Wang, X. L. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: A new class of anode for high-performance lithium-ion batteries. Nanoscale 2013, 5, 7906–7912.

    Article  Google Scholar 

  4. Asakura, D.; Li, C. H.; Mizuno, Y.; Okubo, M.; Zhou, H. S.; Talham, D. R. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 2013, 135, 2793–2799.

    Article  Google Scholar 

  5. Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi, K. J.; Park, J. G. Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 2007, 7, 3041–3045.

    Article  Google Scholar 

  6. Peng, P.; Milliron, D. J.; Hughes, S. M.; Johnson, J. C.; Alivisatos, A. P.; Saykally, R. J. Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett. 2005, 5, 1809–1813.

    Article  Google Scholar 

  7. Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

    Article  Google Scholar 

  8. Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.

    Article  Google Scholar 

  9. Gu, X.; Chen, L.; Ju, Z. C.; Xu, H. Y.; Yang, J.; Qian, Y. T. Controlled growth of porous α-Fe2O3 branches on ß-MnO2 nanorods for excellent performance in lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 4049–4056.

    Article  Google Scholar 

  10. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.

    Article  Google Scholar 

  11. Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Materi. 2015, 25, 1393–1403.

    Article  Google Scholar 

  12. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  13. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  Google Scholar 

  14. Li, Y. B.; Zhang, J. S.; Zheng, G. Y.; Sun, Y. M.; Hong, S. S.; Xiong, F.; Wang, S.; Lee, H. R.; Cui, Y. Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 2015, 9, 10916–10921.

    Article  Google Scholar 

  15. Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

    Article  Google Scholar 

  16. Xu, L.; Jiang, Z.; Mai, L. Q.; Qing, Q. Multiplexed freestanding nanowire transistor bioprobe for intracellular recording: A general fabrication strategy. Nano Lett. 2014, 14, 3602-3607.

    Article  Google Scholar 

  17. Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

    Article  Google Scholar 

  18. Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109–4114.

    Article  Google Scholar 

  19. Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

    Article  Google Scholar 

  20. Fei, L. F.; Lei, S. J.; Zhang, W. B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.

    Article  Google Scholar 

  21. Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273–4278.

    Article  Google Scholar 

  22. Hu, P.; Yan, M. Y.; Wang, X. P.; Han, C. H.; He, L.; Wei, X. J.; Niu, C. J.; Zhao, K. N.; Tian, X. C.; Wei, Q. L. et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett. 2016, 16, 1523–1529.

    Article  Google Scholar 

  23. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnil. 2014, 9, 682–686.

    Article  Google Scholar 

  24. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

    Article  Google Scholar 

  25. Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.

    Article  Google Scholar 

  26. Cao, L. J.; Yang, S. B.; Gao, W.; Liu, Z.; Gong, Y. J.; Ma, L. L.; Shi, G.; Lei, S. D.; Zhang, Y. H.; Zhang, S. T. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 2013, 9, 2905–2910.

    Article  Google Scholar 

  27. Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 2010, 22, 4522–4524.

    Article  Google Scholar 

  28. Zhao, C. Y.; Kong, J. H.; Yao, X. Y.; Tang, X. S.; Dong, Y. L.; Phua, S. L.; Lu, X. H. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6392–6398.

    Article  Google Scholar 

  29. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated threedimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433–3438.

    Article  Google Scholar 

  30. Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.

    Article  Google Scholar 

  31. Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796.

    Article  Google Scholar 

  32. Tompsett, D. A.; Islam, M. S. Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 2013, 25, 2515–2526.

    Article  Google Scholar 

  33. Ling, C.; Zhang, R. G.; Arthur, T. S.; Mizuno, F. How general is the conversion reaction in Mg battery cathode: A case study of the magnesiation of α-MnO2. Chem. Mater. 2015, 27, 5799–5807.

    Article  Google Scholar 

  34. Khan, Z.; Park, S.; Hwang, S. M.; Yang, J. C.; Lee, Y.; Song, H.; Kim, Y.; Ko, H. Hierarchical urchin-shaped α-MnO2 on graphene-coated carbon microfibers: A binder-free electrode for rechargeable aqueous Na–air battery. NPG Asia Mater. 2016, 8, e294.

    Article  Google Scholar 

  35. Shen, X. W.; Qian, T.; Zhou, J. Q.; Xu, N.; Yang, T. Z.; Yan, C. L. Highly flexible full lithium batteries with selfknitted α-MnO2 fabric foam. ACS Appl. Mater. Interfaces 2015, 45, 25298–25305.

    Article  Google Scholar 

  36. Lu, X. Y.; Deng, J. W.; Si, W. P.; Sun, X. L.; Liu, X. H.; Liu, B.; Liu, L. F.; Oswald, S.; Baunack, S.; Grafe, H. J. et al. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes. Adv. Sci. 2015, 2, 1500113.

    Article  Google Scholar 

  37. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  Google Scholar 

  38. Kwak, J. Y.; Hwang, J.; Calderon, B.; Alsalman, H.; Munoz, N.; Schutter, B.; Spencer, M. G. Electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts. Nano Lett. 2014, 14, 4511–4516.

    Article  Google Scholar 

  39. Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  40. Windom, B. C.; Sawyer, W.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301–310.

    Article  Google Scholar 

  41. Gao, T.; Fjellvåg, H.; Norby, P. A comparison study on Raman scattering properties of α- and ß-MnO2. Anal. Chim. Acta 2009, 648, 235–239.

    Article  Google Scholar 

  42. Julien, C. M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta A 2004, 60, 689–700.

    Article  Google Scholar 

  43. Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Thermodynamic and kinetics aspects of spherical MnO2 nanoparticle synthesis in isoamyl alcohol: An ex situ study of particles to one-dimensional shape transformation. J. Phys. Chem. C 2010, 114, 21173–21183.

    Article  Google Scholar 

  44. Mai, L. Q.; Minhas-Khan, A.; Tian, X. C.; Hercule, K. M.; Zhao, Y. L.; Lin, X.; Xu, X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 2013, 4, 2923.

    Article  Google Scholar 

  45. Ren, Y.; Ma, Z.; Bruce, P. G. Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 2012, 41, 4909–4927.

    Article  Google Scholar 

  46. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  Google Scholar 

  47. Sathiya, M.; Prakash, A.; Ramesha, K.; Tarascon, J. M.; Shukla, A. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291–16299.

    Article  Google Scholar 

  48. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559–2567.

    Article  Google Scholar 

  49. Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.

    Article  Google Scholar 

  50. Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R.; Lou, J. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7, 11857.

    Article  Google Scholar 

  51. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  Google Scholar 

  52. Ruetschi, P. Cation-vacancy model for MnO2. J. Electrochem. Soc. 1984, 131, 2737–2744.

    Article  Google Scholar 

  53. Ruetschi, P.; Giovanoli, R. Cation vacancies in MnO2 and their influence on electrochemical reactivity. J. Electrochem. Soc. 1988, 135, 2663–2669.

    Article  Google Scholar 

  54. Ruetschi, P. Influence of cation vacancies on the electrode potential of MnO2. J. Electrochem. Soc. 1988, 135, 2657–2663.

    Article  Google Scholar 

  55. Bogusz, A.; Bürger, D.; Skorupa, I.; Schmidt, O. G.; Schmidt, H. Bipolar resistive switching in YMnO3/Nb:SrTiO3 PN-heterojunctions. Nanotechnology 2016, 45, 455201.

    Article  Google Scholar 

  56. Sutar, S.; Agnihotri, P.; Comfort, E.; Taniguchi, T.; Watanabe, K.; Lee, J. U. Reconfigurable p–n junction diodes and the photovoltaic effect in exfoliated MoS2 films. Appl. Phys. Lett. 2014, 104, 122104.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (No. 51521001), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2017III009), Prof. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (No. 201606955096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengyu Yan or Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Zhao, Y., Wang, J. et al. MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Res. 11, 2083–2092 (2018). https://doi.org/10.1007/s12274-017-1826-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1826-6

Keywords

Navigation