Skip to main content
Log in

One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ∼16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3/I electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288–8297.

    Article  Google Scholar 

  2. Shu, Q. K.; Wei, J. Q.; Wang, K. L.; Song, S.; Guo, N.; Jia, Y.; Li, Z.; Xu, Y.; Cao, A. Y.; Zhu, H. W. et al. Efficient energy conversion of nanotube/nanowire-based solar cells. Chem. Commun. 2010, 46, 5533–5535.

    Article  Google Scholar 

  3. Fu, Z. W.; Jiang, T. F.; Zhang, L. J.; Liu, B. K.; Wang, D. J.; Wang, L. L.; Xie, T. F. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 13705–13712.

    Article  Google Scholar 

  4. Liang, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

    Article  Google Scholar 

  5. Dong, Y. Z.; Li, J. H. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions. Chem. Commun. 2015, 51, 572–575.

    Article  Google Scholar 

  6. Xiao, J. Y.; Yang, Y. Y.; Xu, X.; Shi, J. J.; Zhu, L. F.; Lv, S. T.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. J. Mater. Chem. A 2015, 3, 5289–5293.

    Article  Google Scholar 

  7. Zhang, N.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 2016, 9, 726–734.

    Article  Google Scholar 

  8. Meng, L.; Ren, Z. Y.; Zhou, W.; Qu, Y.; Wang, G. F. MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Res. 2017, 10, 295–304.

    Article  Google Scholar 

  9. Yu, M. Q.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4:Er3+/Yb3+ and g-C3N4. Sci. China Mater. 2017, 60, 228–238.

    Article  Google Scholar 

  10. Ahmad, S.; Guillén, E.; Kavan, L.; Grätzel, M.; Nazeeruddin, M. K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy Environ. Sci. 2013, 6, 3439–3466.

    Article  Google Scholar 

  11. Mai, C. L.; Huang, W. K.; Lu, H. P.; Lee, C. W.; Chiu, C. L.; Liang, Y. R.; Diau, E. W. G.; Yeh, C. Y. Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2010, 46, 809–811.

    Article  Google Scholar 

  12. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.

    Article  Google Scholar 

  13. Choi, H.; Raabe, I.; Kim, D.; Teocoli, F.; Kim, C.; Song, K.; Yum, J, H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chem.—Eur. J. 2010, 16, 1193–1201.

    Article  Google Scholar 

  14. Li, Y.; Wang, G. F.; Pan, K.; Jiang, B. J.; Tian, C. G.; Zhou, W.; Fu, H. G. NaYF4:Er3+/Yb3+-graphene composites: Preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 20381–20386.

    Article  Google Scholar 

  15. Yang, N. L.; Zhai, J.; Wang, D.; Chen, Y. S.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 2010, 4, 887–894.

    Article  Google Scholar 

  16. Hwang, D.; Kim, D. Y.; Jang, S. Y.; Kim, D. Superior photoelectrodes for solid-state dye-sensitized solar cells using amphiphilic TiO2. J. Mater. Chem. A 2013, 1, 1228–1238.

    Article  Google Scholar 

  17. Guo, M.; Xie, K. Y.; Lin, J.; Yong, Z. H.; Yip, C. T.; Zhou, L. M.; Wang, Y.; Huang, H. T. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881–9888.

    Article  Google Scholar 

  18. Rahman, M. M.; Im, S. H.; Lee, J. J. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016, 8, 5884–5891.

    Article  Google Scholar 

  19. Lou, S.; Guo, X. M.; Fan, T. X.; Zhang, D. Butterflies: Inspiration for solar cells and sunlight water-splitting catalysts. Energy Environ. Sci. 2012, 5, 9195–9216.

    Article  Google Scholar 

  20. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  21. Wang, Y. P.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye sensitized solar cells via the incorporation of one dimensional luminescent BaWO4:Eu3+ nanowires. Chem. Commun. 2016, 52, 11124–11126.

    Article  Google Scholar 

  22. Yu, M. Q.; Su, J. M.; Wang, G. F.; Li, Y. D. Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 2016, 9, 2338–2346.

    Article  Google Scholar 

  23. Dong, Y. Z.; Pan, K.; Tian, G. H.; Zhou, W.; Pan, Q. J.; Xie, T. F.; Wang, D. J.; Fu, H. G. Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length. Dalton Trans. 2011, 40, 3808–3814.

    Article  Google Scholar 

  24. Gao, J.; Zhou, Y.; Li, Z. S.; Yan, S. C.; Wang, N. Y.; Zou, Z. G. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale 2012, 4, 3687–3692.

    Article  Google Scholar 

  25. Chen, D.; Zhang, H.; Liu, Y.; Li, J. H. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387.

    Article  Google Scholar 

  26. Wang, S. P.; Li, C. J.; Wang, T.; Zhang, P.; Li, A.; Gong, J. L. Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2014, 2, 2885–2890.

    Article  Google Scholar 

  27. Dai, X. P.; Li, Z. Z.; Ma, Y. D.; Liu, M. Z.; Du, K. L.; Su, H. X.; Zhou, H. Y.; Yu, L.; Sun, H.; Zhang, X. Metallic cobalt encapsulated in bamboo-like and nitrogen-rich carbonitride nanotubes for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 6439–6448.

    Article  Google Scholar 

  28. Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.

    Article  Google Scholar 

  29. Wang, P.; Dai, Q.; Zakeeruddin, S.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.

    Article  Google Scholar 

  30. Hwang, D.; Lee, H.; Jang, S. Y.; Jo, S. M.; Kim, D.; Seo, Y.; Kim, D. Y. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2719–2725.

    Article  Google Scholar 

  31. Sun, T.; Lu, M. Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. A 2012, 108, 171–175.

    Article  Google Scholar 

  32. Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

    Article  Google Scholar 

  33. Zhao, Z. W.; Sun, Y. J.; Dong, F.; Zhang, Y. X.; Zhao, H. Template-synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 2015, 5, 39549–39556.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21501052 and 21471050), the China Postdoctoral Science Foundation (No. 2015M570304), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-TZ06019), the Science Foundation for Excellent Youth of Harbin City of China (No. 2016RQQXJ099), and the Innovative Project of Postgraduate of Heilongjiang Province (No. YJSCX2017-153HLJU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Qu or Guofeng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pan, K., Qu, Y. et al. One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Res. 11, 1322–1330 (2018). https://doi.org/10.1007/s12274-017-1747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1747-4

Keywords

Navigation