Skip to main content
Log in

DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The intrinsic affinity of DNA molecules toward metallic ions can drive the specific formation of copper nanostructures within the nucleic acid helix structure in a sequence-dependent manner. The resultant nanostructures have interesting fluorescent and electrochemical properties, which are attractive for novel biosensing applications. However, the potential of using DNA-templated nanostructures for precision disease diagnosis remains unexplored. Particularly, DNAtemplated nanostructures show high potential for the universal amplification-free detection of different RNA biomarker species. Because of their low cellular levels and differing species-dependent length and sequence features, simultaneous detection of different messenger RNAs, microRNAs, and long non-coding RNAs species with a single technique is challenging. Here, we report a contemporary technique for facile in situ assembly of DNA-templated copper nanoblocks (CuNBs) on various RNA species targets after hybridization-based magnetic isolation. Our approach circumvents the typical limitations associated with amplification and labeling procedures of current RNA assays. The synthesized CuNBs enabled amplification-free fM-level RNA detection with flexible fluorescence or electrochemical readouts. Furthermore, our nanosensing technique displays potential for clinical application, as demonstrated by non-invasive analysis of three diagnostic RNA biomarkers from a cohort of 10 prostate cancer patient urinary samples with 100%-concordance (quantitative reverse transcriptionpolymerase chain reaction (PCR) validation). The good analytical performance and versatility of our method may be useful in both diagnostics and research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNAtemplated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.

    Article  Google Scholar 

  2. Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotidestabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.

    Article  Google Scholar 

  3. Monson, C. F.; Woolley, A. T. DNA-templated construction of copper nanowires. Nano Lett. 2003, 3, 359–363.

    Article  Google Scholar 

  4. Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem., Int. Ed. 2010, 49, 5665–5667.

    Article  Google Scholar 

  5. Jia, X. F.; Li, J.; Han, L.; Ren, J. T.; Yang, X.; Wang, E. K. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 2012, 6, 3311–3317.

    Article  Google Scholar 

  6. Qing, Z. H.; He, X. X.; He, D. G.; Wang, K. M.; Xu, F. Z.; Qing, T. P.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 9719–9722.

    Article  Google Scholar 

  7. Qing, Z. H.; He, X. X.; Qing, T. P.; Wang, K. M.; Shi, H.; He, D. G.; Zou, Z.; Yan, L. A.; Xu, F. Z.; Ye, X. S.; Mao, Z. G. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal. Chem. 2013, 85, 12138–12143.

    Article  Google Scholar 

  8. Mao, Z. G.; Qing, Z. H.; Qing, T. P.; Xu, F. Z.; Wen, L.; He, X. X.; He, D. G.; Shi, H.; Wang, K. M. Poly(thymine)- templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal. Chem. 2015, 87, 7454–7460.

    Article  Google Scholar 

  9. Song, Q. W.; Shi, Y.; He, D. C.; Xu, S. H.; Ouyang, J. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem.—Eur. J. 2015, 21, 2417–2422.

    Article  Google Scholar 

  10. Chen, J. Y.; Ji, X. H.; Tinnefeld, P.; He, Z. K. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules. ACS Appl. Mater. Interfaces 2016, 8, 1786–1794.

    Article  Google Scholar 

  11. Sha, L.; Zhang, X. J.; Wang, G. F. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosens. Bioelectron. 2016, 82, 85–92.

    Article  Google Scholar 

  12. Jia, X. F.; Yang, X. A.; Li, J.; Li, D. Y.; Wang, E. K. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239.

    Article  Google Scholar 

  13. Brinkman, B. M. N. Splice variants as cancer biomarkers. Clin. Biochem. 2004, 37, 584–594.

    Article  Google Scholar 

  14. Van Roosbroeck, K.; Pollet, J.; Calin, G. A. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev. Mol. Diagn. 2013, 13, 183–204.

    Article  Google Scholar 

  15. O’Leary, V. B.; Ovsepian, S. V.; Carrascosa, L. G.; Buske, F. A.; Radulovic, V.; Niyazi, M.; Moertl, S.; Trau, M.; Atkinson, M. J.; Anastasov, N. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 2015, 11, 474–485.

    Article  Google Scholar 

  16. Mercer, T. R.; Dinger, M. E.; Mattick, J. S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159.

    Article  Google Scholar 

  17. Sharp, P. A. The centrality of RNA. Cell 2009, 136, 577–580.

    Article  Google Scholar 

  18. Riedmaier, I.; Pfaffl, M. W. Transcriptional biomarkers— High throughput screening, quantitative verification, and bioinformatical validation methods. Methods 2013, 59, 3–9.

    Article  Google Scholar 

  19. Prensner, J. R.; Rubin, M. A.; Wei, J. T.; Chinnaiyan, A. M. Beyond PSA: The next generation of prostate cancer biomarkers. Sci. Transl. Med. 2012, 4, 127rv3.

  20. Velonas, V. M.; Woo, H. H.; dos Remedios, C. G.; Assinder, S. J. Current status of biomarkers for prostate cancer. Int. J. Mol. Sci. 2013, 14, 11034–11060.

    Article  Google Scholar 

  21. Fabris, L.; Ceder, Y.; Chinnaiyan, A. M.; Jenster, G. W.; Sorensen, K. D.; Tomlins, S. A.; Visakorpi, T.; Calin, G. A. The potential of microRNAs as prostate cancer biomarkers. Eur. Urol. 2016, 70, 312–322.

    Article  Google Scholar 

  22. Rönnau, C. G. H.; Verhaegh, G. W.; Luna-Velez, M. V.; Schalken, J. A. Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Res. Int. 2014, 2014, Article ID591703.

  23. Pellegrini, K. L.; Sanda, M. G.; Moreno, C. S. RNA biomarkers to facilitate the identification of aggressive prostate cancer. Mol. Aspects Med. 2015, 45, 37–46.

    Article  Google Scholar 

  24. Tomlins, S. A.; Bjartell, A.; Chinnaiyan, A. M.; Jenster, G.; Nam, R. K.; Rubin, M. A.; Schalken, J. A. ETS gene fusions in prostate cancer: From discovery to daily clinical practice. Eur. Urol. 2009, 56, 275–286.

    Article  Google Scholar 

  25. Tomlins, S. A.; Rhodes, D. R.; Perner, S.; Dhanasekaran, S. M.; Mehra, R.; Sun, X. W.; Varambally, S.; Cao, X. H.; Tchinda, J.; Kuefer, R. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310, 644–648.

    Article  Google Scholar 

  26. Martello, G.; Rosato, A.; Ferrari, F.; Manfrin, A.; Cordenonsi, M.; Dupont, S.; Enzo, E.; Guzzardo, V.; Rondina, M.; Spruce, T. et al. A microRNA targeting dicer for metastasis control. Cell 2010, 141, 1195–1207.

    Article  Google Scholar 

  27. Wang, W.-X.; Kyprianou, N.; Wang, X. W.; Nelson, P. T. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res. 2010, 70, 9137–9142.

    Article  Google Scholar 

  28. Chen, P.-S.; Su, J.-L.; Cha, S.-T.; Tarn, W.-Y.; Wang, M.-Y.; Hsu, H.-C.; Lin, M.-T.; Chu, C.-Y.; Hua, K.-T.; Chen, C.-N. et al. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J. Clin. Investig. 2011, 121, 3442–3455.

    Article  Google Scholar 

  29. Prensner, J. R.; Iyer, M. K.; Sahu, A.; Asangani, I. A.; Cao, Q.; Patel, L.; Vergara, I. A.; Davicioni, E.; Erho, N.; Ghadessi, M. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 2013, 45, 1392–1398.

    Article  Google Scholar 

  30. Hessels, D.; Smit, F. P.; Verhaegh, G. W.; Witjes, J. A.; Cornel, E. B.; Schalken, J. A. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 2007, 13, 5103–5108.

    Article  Google Scholar 

  31. Bryant, R. J.; Pawlowski, T.; Catto, J. W. F.; Marsden, G.; Vessella, R. L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F. C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 2012, 106, 768–774.

    Article  Google Scholar 

  32. Bustin, S. A. Absolute quantification of mRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193.

    Article  Google Scholar 

  33. Chen, C. F.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z. H.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.

    Article  Google Scholar 

  34. Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal. Chem. 2016, 88, 2000–2005.

    Article  Google Scholar 

  35. Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Amplification-free detection of gene fusions in prostate cancer urinary samples using mRNA-gold affinity interactions. Anal. Chem. 2016, 88, 6781–6788.

    Article  Google Scholar 

  36. Xu, F. Z.; Shi, H.; He, X. X.; Wang, K. M.; He, D. G.; Guo, Q. P.; Qing, Z. H.; Yan, L. A.; Ye, X. S.; Li, D. et al. Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal. Chem. 2014, 86, 6976–6982.

    Article  Google Scholar 

  37. Wang, Z. Y.; Si, L.; Bao, J. C.; Dai, Z. H. A reusable microRNA sensor based on the electrocatalytic property of heteroduplex-templated copper nanoclusters. Chem. Commun. 2015, 51, 6305–6307.

    Article  Google Scholar 

  38. Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3984.

    Article  Google Scholar 

  39. Das, J.; Ivanov, I.; Montermini, L.; Rak, J.; Sargent, E. H.; Kelley, S. O. An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat. Chem. 2015, 7, 569–575.

    Article  Google Scholar 

  40. Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale 2016, 8, 10087–10095.

    Article  Google Scholar 

  41. Zhang, P. B.; Zhang, J. Y.; Wang, C. L.; Liu, C. H.; Wang, H.; Li, Z. P. Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Anal. Chem. 2014, 86, 1076–1082.

    Article  Google Scholar 

  42. Kaffenberger, S. D.; Barbieri, C. E. Molecular subtyping of prostate cancer. Curr. Opi. Urol. 2016, 26, 213–218.

    Article  Google Scholar 

  43. Koo, K. M.; Wee, E. J. H.; Mainwaring, P. N.; Wang, Y. L.; Trau, M. Toward precision medicine: A cancer molecular subtyping nano-strategy for RNA biomarkers in tumor and urine. Small 2016, 12, 6233–6242.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UQ Postdoctoral Research Fellowship (No. 2012001456). Although not directly funding the research work in this paper, we acknowledge funding received by our laboratory from the National Breast Cancer Foundation of Australia (No. CG-12-07). This grant has significantly contributed to the environment to stimulate the research described here. K. M. K. acknowledges support from the Australian Government Research Training Program Scholarship. We thank Robert “Frank” Gardiner, Aine Farrell, Robyn Medcraft, and Clement Chow for collecting and providing clinical urine samples. We thank Junrong Li for TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Trau.

Electronic supplementary material

12274_2017_1706_MOESM1_ESM.pdf

DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, K.M., Carrascosa, L.G. & Trau, M. DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species. Nano Res. 11, 940–952 (2018). https://doi.org/10.1007/s12274-017-1706-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1706-0

Keywords

Navigation