Skip to main content
Log in

Three-layer phosphorene-metal interfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phosphorene has attracted much attention recently as an alternative channel material in nanoscale electronic and optoelectronic devices due to its high carrier mobility and tunable direct bandgap. Compared with monolayer (ML) phosphorene, few-layer (FL) phosphorene is easier to prepare, is more stable in experiments, and is expected to form a smaller Schottky barrier height (SBH) at the phosphorene-metal interface. Using ab initio electronic structure calculations and quantum transport simulations, we perform a systematic study of the interfacial properties of three-layer (3L) phosphorene field effect transistors (FETs) contacted with several common metals (Al, Ag, Au, Cu, Ti, Cr, Ni, and Pd) for the first time. The SBHs obtained in the vertical direction from projecting the band structures of the 3L phosphorene-metal systems to the left bilayer (2L) phosphorenes are comparable with those obtained in the lateral direction from the quantum transport simulations for 2L phosphorene FETs. The quantum transport simulations for the 3L phosphorene FETs show that 3L phosphorene forms n-type Schottky contacts with electron SBHs of 0.16 and 0.28 eV in the lateral direction, when Ag and Cu are used as electrodes, respectively, and p-type Schottky contacts with hole SBHs of 0.05, 0.11, 0.20, 0.30, 0.30, and 0.31 eV in the lateral direction when Cr, Pd, Ni, Ti, Al, and Au are used as electrodes, respectively. The calculated polarity and SBHs of the 3L phosphorene FETs are generally in agreement with the available experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  2. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

    Article  Google Scholar 

  3. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  4. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

  5. Reich, E. S. Phosphorene excites materials scientists. Nature 2014, 506, 19.

    Article  Google Scholar 

  6. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  Google Scholar 

  7. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  Google Scholar 

  8. Churchill, H. O.; Jarillo-Herrero, P. Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 2014, 9, 330–331.

    Article  Google Scholar 

  9. Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.

    Article  Google Scholar 

  10. Wan, R. L.; Cao, X.; Guo, J. Simulation of phosphorene Schottky-barrier transistors. Appl. Phys. Lett. 2014, 105, 163511.

    Article  Google Scholar 

  11. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  Google Scholar 

  12. Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

    Article  Google Scholar 

  13. Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

    Google Scholar 

  14. Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. G.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene–metal contacts. Chem. Mater. 2016, 28, 2100–2109.

    Article  Google Scholar 

  15. Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.

    Article  Google Scholar 

  16. Wang, Y. Y.; Yang, R. X.; Quhe, R. G.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 2016, 8, 1179–1191.

    Article  Google Scholar 

  17. Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

    Article  Google Scholar 

  18. Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. Highperformance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 2015, 6, 7809.

    Article  Google Scholar 

  19. Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424–6429.

    Article  Google Scholar 

  20. Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnol. 2015, 26, 435702.

    Article  Google Scholar 

  21. Li, X. F.; Du, Y. C.; Si, M. W.; Yang, L. M.; Li, S. C.; Li, T. Y.; Xiong, X.; Ye, P. D.; Wu, Y. Q. Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale 2016, 8, 3572–3578.

    Article  Google Scholar 

  22. Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

    Article  Google Scholar 

  23. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  24. Liu, H.; Neal, A. T.; Si, M. W.; Du, Y. C.; Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electr. Device Lett. 2014, 35, 795–797.

    Article  Google Scholar 

  25. Xu, R. J.; Yang, J.; Zhu, Y.; Yan, H.; Pei, J. J.; Myint, Y. W.; Zhang, S.; Lu, Y. R. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems. Nanoscale 2015, 8, 129–135.

    Article  Google Scholar 

  26. Gong, K.; Zhang, L.; Ji, W.; Guo, H. Electrical contacts to monolayer black phosphorus: A first-principles investigation. Phys. Rev. B 2014, 90, 125441.

    Article  Google Scholar 

  27. Zhu, S. C.; Ni, Y.; Liu, J.; Yao, K. L. The study of interaction and charge transfer at black phosphorus–metal interfaces. J. Phys. D Appl. Phys. 2015, 48, 445101.

    Article  Google Scholar 

  28. Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. G.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694–12705.

    Article  Google Scholar 

  29. Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Neto, A. H. C.; Ozyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145–2151.

    Article  Google Scholar 

  30. Yuan, Y. K.; Quhe, R. G.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Lu, J. Strong band hybridization between silicene and Ag(111) substrate. Physica E 2014, 58, 38–42.

    Article  Google Scholar 

  31. Cheng, D. J.; Barcaro, G.; Charlier, J. C.; Hou, M.; Fortunelli, A. Homogeneous nucleation of graphitic nanostructures from carbon chains on Ni(111). J. Phy. Chem. C 2011, 115, 10537–10543.

    Article  Google Scholar 

  32. So, C.; Zhang, H.; Wang, Y.; Ye, M.; Pan, Y.; Quhe, R.; Li, J. Z.; Zhang, X.; Zhou, Y.; Lu, J. A computational study of monolayer hexagonal WTe2 to metal interfaces. Phys. Status Solidi B 2017, in press, DOI: 10.1002/pssb.201600837.

    Google Scholar 

  33. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Google Scholar 

  34. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  35. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  36. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  38. Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. 2010, 22, 022201.

    Google Scholar 

  39. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. 2002, 14, 2717–2744.

    Google Scholar 

  40. Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

    Article  Google Scholar 

  41. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

  42. Çakir, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.

    Article  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  44. Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R. G.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2017, 29, 2191–2201.

    Article  Google Scholar 

  45. Guo, Y.; Pan, F.; Ye, M.; Wang, Y. Y.; Pan, Y. Y.; Zhang, X. Y.; Li, J. Z.; Zhang, H.; Lu, J. Interfacial properties of stanene–metal contacts. 2D Mater. 2016, 3, 035020.

    Article  Google Scholar 

  46. Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Shi, J. J.; Lü, J. Silicene on substrates: A theoretical perspective. Chin. Phys. B 2015, 24, 087308.

    Article  Google Scholar 

  47. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R. G.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

    Article  Google Scholar 

  48. Quhe, R. G.; Yuan, Y. K.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Yu, D. P.; Yang, J. B.; Lu, J. Does the Dirac cone exist in silicene on metal substrates? Sci. Rep. 2014, 4, 5476.

    Article  Google Scholar 

  49. Kang, J. H.; Liu, W.; Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 2014, 104, 093106.

    Article  Google Scholar 

  50. Ni, Z. Y.; Ye, M.; Ma, J. H.; Wang, Y. Y.; Quhe, R. G.; Zheng, J. X.; Dai, L.; Yu, D. P.; Shi, J. J.; Yang, J. B. et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron. Mater. 2016, 2, 1600191.

    Article  Google Scholar 

  51. Pan, Y. Y.; Wang, Y. Y.; Wang, L.; Zhong, H. X.; Quhe, R. G.; Ni, Z. Y.; Ye, M.; Mei, W. N.; Shi, J. J.; Guo, W. L. et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale 2015, 7, 2116–2127.

    Article  Google Scholar 

  52. Pan, Y. Y.; Li, S. B.; Ye, M.; Quhe, R. G.; Song, Z. G.; Wang, Y. Y.; Zheng, J. X.; Pan, F.; Guo, W. L.; Yang, J. B. et al. Interfacial properties of monolayer MoSe2–metal contacts. J. Phys. Chem. C 2016, 120, 13063–13070.

    Article  Google Scholar 

  53. Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 2008, 15, 186–197.

    Article  Google Scholar 

  54. Van Hoof, C.; Deneffe, K.; De Boeck, J.; Arent, D. J.; Borghs, G. Franz–Keldysh oscillations originating from a well-controlled electric field in the GaAs depletion region. Appl. Phys. Lett. 1989, 54, 608–610.

    Article  Google Scholar 

  55. Shen, H.; Dutta, M.; Fotiadis, L.; Newman, P. G.; Moerkirk, R. P.; Chang, W. H.; Sacks, R. N. Photoreflectance study of surface Fermi level in GaAs and GaAlAs. Appl. Phys. Lett. 1990, 57, 2118–2120.

    Article  Google Scholar 

  56. Hwang, J. S.; Chang, C. C.; Chen, M. F.; Chen, C. C.; Lin, K. I.; Tang, F. C.; Hong, M.; Kwo, J. Schottky barrier height and interfacial state density on oxide-GaAs interface. J. Appl. Phys. 2003, 94, 348–353.

    Article  Google Scholar 

  57. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    Article  Google Scholar 

  58. Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890–1895.

    Article  Google Scholar 

  59. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  60. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Article  Google Scholar 

  61. Padilha, J. E.; Fazzio, A.; da Silva, A. J. R. Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803.

    Article  Google Scholar 

  62. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  Google Scholar 

  63. Hu, W.; Wang, T.; Yang, J. L. Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites. J. Mater. Chem. C 2015, 3, 4756–4761.

    Article  Google Scholar 

  64. Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surfaceengineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

    Article  Google Scholar 

  65. Quhe, R. G.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959–3966.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11274016, 11474012, 11674005 and 11274233), the National Basic Research Program of China (973 Program) (Nos. 2013CB932604 and 2012CB619304), the Ministry of Science and Technology of China (Nos. 2016YFB0700600 and 2016YFA0301300), and open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education of China (No. INMD-2016M03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Pan, Y., Ye, M. et al. Three-layer phosphorene-metal interfaces. Nano Res. 11, 707–721 (2018). https://doi.org/10.1007/s12274-017-1680-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1680-6

Keywords

Navigation