Skip to main content
Log in

The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to their unique optical properties (e.g., bright fluorescence coupled with strong photostability) and negligible toxicity, fluorescent silicon nanoparticles (SiNPs) have been demonstrated to be promising probes for bioimaging analysis. Herein, we describe the use of Caenorhabditis elegans (C. elegans) as an animal model to investigate the in vivo behavior and molecular imaging capacity of ultrasmall fluorescent SiNPs (e.g., ∼3.9 ± 0.4 nm). Our studies show that (1) the internalized SiNPs do not affect the morphology and physiology of the worms, suggesting the superior biocompatibility of SiNPs in live organisms; (2) the internalized SiNPs cannot cross the basement membrane of C. elegans tissues and they display limited diffusion ability in vivo, providing the possibility of their use as nanoprobes for specific tissue imaging studies in intact animals; (3) more than 80% of the fluorescence signal of internalized SiNPs remains even after 120 min of continuous laser bleaching, whereas only ∼20% of the signal intensity of mCherry or cadmium telluride quantum dots remains under the same condition, indicating the robust photostability of SiNPs in live organisms; and (4) cyclic RGD-peptide-conjugated SiNPs can specifically label muscle attachment structures in live C. elegans, which is the first proof-of-concept example of SiNPs for targeted molecular imaging in these live worms. These finding raise exciting opportunities for the design of high-quality SiNP-based fluorescent probes for long-term and real-time tracking of biological events in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellebust, A.; Richards-Kortum, R. Advances in molecular imaging: Targeted optical contrast agents for cancer diagnostics. Nanomedicine 2012, 7, 429–445.

    Article  Google Scholar 

  2. Shi, X. L.; Zhang, X. J.; Xia, T.; Fang, X. H. Living cell study at the single-molecule and single-cell levels by atomic force microscopy. Nanomedicine 2012, 7, 1625–1637.

    Article  Google Scholar 

  3. Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924–3930.

    Article  Google Scholar 

  4. Jiang, Y. Y.; Deng, Z. J.; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L.; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152–2161.

    Article  Google Scholar 

  5. Xiao, L. S.; Li, J. T.; Brougham, D. F.; Fox, E. K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M. et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315–6324.

    Article  Google Scholar 

  6. Eberlin, L. S.; Tibshirani, R. J.; Zhang, J. L.; Longacre, T. A.; Berry, G. J.; Bingham, D. B.; Norton, J. A.; Zare, R. N.; Poultsides, G. A. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. Proc. Natl. Acad. Sci. USA 2014, 111, 2436–2441.

    Article  Google Scholar 

  7. Erathodiyil, N.; Ying, J. Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res. 2011, 44, 925–935.

    Article  Google Scholar 

  8. Xu, H.; Li, Q.; Wang, L. H.; He, Y.; Shi, J. Y.; Tang, B.; Fan, C. H. Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43, 2650–2661.

    Article  Google Scholar 

  9. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Article  Google Scholar 

  10. Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn- Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.

    Article  Google Scholar 

  11. Samanta, A.; Deng, Z. T.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853–870.

    Article  Google Scholar 

  12. Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.

    Article  Google Scholar 

  13. Fakhri, N.; Wessel, A. D.; Willms, C.; Pasquali, M.; Klopfenstein, D. R.; MacKintosh, F. C.; Schmidt, C. F. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 2014, 344, 1031–1035.

    Article  Google Scholar 

  14. Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer. Biomaterials 2015, 67, 323–334.

    Article  Google Scholar 

  15. Li, Y. T.; Tang, J. H.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core–shell upconversion nanoparticle@ metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

    Article  Google Scholar 

  16. Wu, N.; Bao, L.; Ding, L.; Ju, H. X. A single excitationduplexed imaging strategy for profiling cell surface proteinspecific glycoforms. Angew. Chem., Int. Ed. 2016, 55, 5220–5224.

    Article  Google Scholar 

  17. Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S.-T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

    Article  Google Scholar 

  18. Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921.

    Article  Google Scholar 

  19. Joo, J.; Liu, X. Y.; Kotamraju, V. R.; Ruoslahti, E.; Nam, Y.; Sailor, M. J. Gated luminescence imaging of silicon nanoparticles. ACS Nano 2015, 9, 6233–6241.

    Article  Google Scholar 

  20. Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.

    Article  Google Scholar 

  21. Li, Z. F.; Ruckenstein, E. Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 2004, 4, 1463–1467.

    Article  Google Scholar 

  22. Pang, J. Y.; Su, Y. Y.; Zhong, Y. L.; Peng, F.; Song, B.; He, Y. Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res. 2016, 9, 3027–3037.

    Article  Google Scholar 

  23. Zhang, X. D.; Chen, X. K.; Kai, S. Q.; Wang, H. Y.; Yang, J. J.; Wu, F. G.; Chen, Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem. 2015, 87, 3360–3365.

    Article  Google Scholar 

  24. Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.

    Article  Google Scholar 

  25. Erogbogbo, F.; Yong, K. T.; Roy, I.; Hu, R.; Law, W. C.; Zhao, W. W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T. et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 2011, 5, 413–423.

    Article  Google Scholar 

  26. Choi, C. H. J.; Zuckerman, J. E.; Webster, P.; Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA 2011, 108, 6656–6661.

    Article  Google Scholar 

  27. Zhang, X. D.; Luo, Z. T.; Chen, J.; Song, S. S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y. M.; Gao, K.; Zhang, L. F. et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669.

    Article  Google Scholar 

  28. Liu, J.; Wang, P. Y.; Zhang, X.; Wang, L. M.; Wang, D. L.; Gu, Z. J.; Tang, J. L.; Guo, M. Y.; Cao, M. J.; Zhou, H. G. et al. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 2016, 10, 4587–4598.

    Article  Google Scholar 

  29. He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.

    Article  Google Scholar 

  30. Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

    Article  Google Scholar 

  31. Zhong, Y. L.; Peng, F.; Wei, X. P.; Zhou, Y. F.; Wang, J.; Jiang, X. X.; Su, Y. Y.; Su, S.; Lee, S. T.; He, Y. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem., Int. Ed. 2012, 51, 8485–8489.

    Article  Google Scholar 

  32. Zhong, Y. L.; Sun, X. T.; Wang, S. Y.; Peng, F.; Bao, F.; Su, Y. Y.; Li, Y. Y.; Lee, S. T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967.

    Article  Google Scholar 

  33. Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726–14732.

    Article  Google Scholar 

  34. Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular ph measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.

    Article  Google Scholar 

  35. Wong, A.; Li, X. N.; Molin, L.; Solari, F.; Elena-Herrmann, B.; Sakellariou, D. µHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans. Anal. Chem. 2014, 86, 6064–6070.

    Article  Google Scholar 

  36. Stupp, G. S.; Clendinen, C. S.; Ajredini, R.; Szewc, M. A.; Garrett, T.; Menger, R. F.; Yost, R. A.; Beecher, C.; Edison, A. S. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans. Anal. Chem. 2013, 85, 11858–11865.

    Article  Google Scholar 

  37. Zhang, Y.; Li, W. N.; Li, L. F.; Li, Y. B.; Fu, R.; Zhu, Y.; Li, J.; Zhou, Y. F.; Xiong, S. D.; Zhang, H. M. Structural damage in the C. elegans epidermis causes release of STA-2 and induction of an innate immune response. Immunity 2015, 42, 309–320.

    Article  Google Scholar 

  38. Qu, Y.; Li, W.; Zhou, Y. L.; Liu, X. F.; Zhang, L. L.; Wang, L. M.; Li, Y. F.; Iida, A.; Tang, Z. Y.; Zhao, Y. L. et al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174–3183.

    Article  Google Scholar 

  39. Gonzalez-Moragas, L.; Roig, A.; Laromaine, A. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 2015, 219, 10–26.

    Article  Google Scholar 

  40. Kuo, Y.; Hsu, T. Y.; Wu, Y. C.; Chang, H. C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 2013, 34, 8352–8360.

    Article  Google Scholar 

  41. Song, C. X.; Zhong, Y. L.; Jiang, X. X.; Peng, F.; Lu, Y. M.; Ji, X. Y.; Su, Y. Y.; He, Y. Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 2015, 87, 6718–6723.

    Article  Google Scholar 

  42. Chen, B. H.; Jiang, Y.; Zeng, S.; Yan, J. C.; Li, X.; Zhang, Y.; Zou, W.; Wang, X. C. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by tat-1/chat-1. PLos Genet. 2010, 6. e1001235.

    Article  Google Scholar 

  43. Zanni, E.; De Bellis, G.; Bracciale, M. P.; Broggi, A.; Santarelli, M. L.; Sarto, M. S.; Palleschi, C.; Uccelletti, D. Graphite nanoplatelets and Caenorhabditis elegans: Insights from an in vivo model. Nano Lett. 2012, 12, 2740–2744.

    Article  Google Scholar 

  44. Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699.

    Article  Google Scholar 

  45. Costa, M.; Draper, B. W.; Priess, J. R. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev. Biol. 1997, 184, 373–384.

    Article  Google Scholar 

  46. Francis, G. R.; Waterston, R. H. Muscle organization in Caenorhabditis elegans: Localization of proteins implicated in thin filament attachment and I-band organization. J. Cell Biol. 1985, 101, 1532–1549.

    Article  Google Scholar 

  47. Oka, T.; Toyomura, T.; Honjo, K.; Wada, Y.; Futai, M. Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase- cell-specific expression during development. J. Biol. Chem. 2001, 276, 33079–33085.

    Article  Google Scholar 

  48. Zhou, Y. F.; Wang, Q.; Song, B.; Wu, S. C.; Su, Y. Y.; Zhang, H. M.; He, Y. A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans. Biomaterials 2015, 72, 38–48.

    Article  Google Scholar 

  49. Gettner, S. N.; Kenyon, C.; Reichardt, L. F. Characterization of β pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 1995, 129, 1127–1141.

    Article  Google Scholar 

  50. Mackinnon, A. C.; Qadota, H.; Norman, K. R.; Moerman, D. G.; Williams, B. D. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr. Boil. 2002, 12, 787–797.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank X. Wang and the CGC for reagents, Y. Zhu, Y. Li, W. Li and L. Li (Soochow University, China) for technical assistance. This work was supported by grants from National Basic Research Program of China (Nos. 2013CB934400 and 2012CB932400), the National Natural Science Foundation of China (Nos. 61361160412, 21575096, 31271429, 21605109 and 31400860), the Natural Science Foundation of Jiangsu Province of China (Nos. BK20130052, BK20130298 and BK20160009), Jiangsu Provincial Innovative Research Team and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1075), 111 Project and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), as well as the Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Zhang or Yao He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, Y., Zhong, Y. et al. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res. 11, 2336–2346 (2018). https://doi.org/10.1007/s12274-017-1677-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1677-1

Keywords

Navigation