Skip to main content
Log in

Ag/C nanoparticles catalysed aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones, catalyzed by Ag/C nanoparticles under mild conditions, was successfully developed. This method features a wide scope of substrates, good yields, and uncomplicated recycling of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dannhardt, G.; Fiebich, B. L.; Schweppenhäuser, J. COX-1/COX-2 inhibitors based on the methanone moiety. Eur. J. Med. Chem. 2002, 37, 147–161.

    Article  Google Scholar 

  2. Hummel, C. W.; Geiser, A. G.; Bryant, H. U.; Cohen, I. R.; Dally, R. D.; Fong, K. C.; Frank, S. A.; Hinklin, R.; Jones, S. A.; Lewis, G. et al. A selective estrogen receptor modulator designed for the treatment of uterine leiomyoma with unique tissue specificity for uterus and ovaries in rats. J. Med. Chem. 2005, 48, 6772–6775.

    Article  Google Scholar 

  3. Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and efficient benzylic C–H oxidation in water using a hypervalent iodine reagent: Activation of polymeric iodosobenzene with KBr in the presence of montmorillonite-K10. J. Org. Chem. 2008, 73, 7365–7368.

    Article  Google Scholar 

  4. Moriyama, K.; Takemura, M.; Togo, H. Direct and selective benzylic oxidation of alkylarenes via C–H abstraction using alkali metal bromides. Org. Lett. 2012, 14, 2414–2417.

    Article  Google Scholar 

  5. Wu, X. H.; Gorden, A. E. V. 2-Quinoxalinol salen copper complexes for oxidation of aryl methylenes. Eur. J. Org. Chem. 2009, 2009, 503–509.

    Article  Google Scholar 

  6. Alanthadka, A.; Devi, E. S.; Nagarajan, S.; Sridharan, V.; Suvitha, A.; Maheswari, C. U. NHC-catalyzed benzylic Csp³–H bond activation of alkylarenes and N-benzylamines for the synthesis of 3H-quinazolin-4-ones: Experimental and theoretical study. Eur. J. Org. Chem. 2016, 2016, 4872–4880.

    Article  Google Scholar 

  7. Hossain, M. M.; Shyu, S. G. Biphasic copper-catalyzed C–H bond activation of arylalkanes to ketones with tert-butyl hydroperoxide in water at room temperature. Tetrahedron 2016, 72, 4252–4257.

    Article  Google Scholar 

  8. Shaabani, A.; Laeini, M. S.; Shaabani, S.; Seyyedhamzeh, M. NaBrO3/guanidinium-based sulfonic acid: As a transition metal- and strong inorganic acid-free oxidation system for alcohols and alkyl arenes. New. J. Chem. 2016, 40, 2079–2082.

    Article  Google Scholar 

  9. De Houwer, J.; Abbaspour Tehrani, K.; Maes, B. U. W. Synthesis of aryl(di)azinyl ketones through copper- and iron-catalyzed oxidation of the methylene group of aryl(di)azinylmethanes. Angew. Chem., Int. Ed. 2012, 51, 2745–2748.

    Article  Google Scholar 

  10. Itoh, M.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed α-methylenation of benzylpyridines using dimethylacetamide as one-carbon source. Org. Lett. 2015, 16, 2050–2053.

    Article  Google Scholar 

  11. Liu, J. M.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K. L.; Lei, A. W. Chloroacetate-promoted selective oxidation of heterobenzylic methylenes under copper catalysis. Angew. Chem., Int. Ed. 2015, 54, 1261–1265.

    Article  Google Scholar 

  12. Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media. Green Chem. 2011, 13, 2161–2166.

    Article  Google Scholar 

  13. Urgoitia, G.; Maiztegi, A.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)2/bis-triazole system. RSC Adv. 2015, 5, 103210–103217.

    Article  Google Scholar 

  14. Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. An outstanding catalyst for the oxygen-mediated oxidation of arylcarbinols, arylmethylene and arylacetylene compounds. Chem. Commun. 2015, 51, 4799–4802.

    Article  Google Scholar 

  15. Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Efficient benzylic and aliphatic C–H oxidation with selectivity for methylenic sites catalyzed by a bioinspired manganese complex. Org. Lett. 2014, 16, 1108–1111.

    Article  Google Scholar 

  16. Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Bismuthcatalyzed benzylic oxidations with tert-butyl hydroperoxide. Org. Lett. 2005, 7, 4549–4552.

    Article  Google Scholar 

  17. Peng, H.; Lin, A. J.; Zhang, Y.; Jiang, H. L.; Zhou, J. C.; Cheng, Y. X.; Zhu, C. J.; Hu, H. W. Oxidation and amination of benzylic sp3 C–H bond catalyzed by rhenium(V) complexes. ACS Catal. 2012, 2, 163–167.

    Article  Google Scholar 

  18. Wang, Y.; Kuang, Y.; Wang, Y. H. Rh2(esp)2-catalyzed allylic and benzylic oxidations. Chem. Commun. 2015, 51, 5852–5855.

    Article  Google Scholar 

  19. Li, X. H.; Chen, J. S.; Wang, X. C.; Sun, J. H.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–8077.

    Article  Google Scholar 

  20. Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109–2113.

    Article  Google Scholar 

  21. Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.

    Article  Google Scholar 

  22. Shaabani, A.; Hezarkhani, Z.; Badali, E. Wool supported manganese dioxide nano-scale dispersion: A biopolymer based catalyst for the aerobic oxidation of organic compounds. RSC Adv. 2015, 5, 61759–61767.

    Article  Google Scholar 

  23. Fan, S.; Dong, W. J.; Huang, X. B.; Gao, H. Y.; Wang, J. J.; Jin, Z. K.; Tang, J.; Wang, G. In situ-induced synthesis of magnetic Cu-CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C–H oxidation. ACS Catal. 2017, 7, 243–249.

    Article  Google Scholar 

  24. Shaabani, A.; Hezarkhani, Z.; Nejad, M. K. Cr- and Znsubstituted cobalt ferrite nanoparticles supported on guanidinemodified graphene oxide as efficient and recyclable catalysts. J. Mater. Sci. 2017, 52, 96–112.

    Article  Google Scholar 

  25. Shi, D. B.; Ren, Y. W.; Jiang, H. F.; Lu, J. X.; Cheng, X. F. A new three-dimensional metal-organic framework constructed from 9,10-anthracene dibenzoate and Cd(II) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes. Dalton Trans. 2013, 42, 484–491.

    Article  Google Scholar 

  26. Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Catalytically active metal organic framework based on a porphyrin modified by electron-withdrawing groups. J. Coord. Chem. 2017, 70, 746–755.

    Article  Google Scholar 

  27. Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Photocatalytic C–H activation of hydrocarbons over VO@g-C3N4. ACS Sustainable Chem. Eng. 2016, 4, 2333–2336.

    Article  Google Scholar 

  28. Mühldorf, B.; Wolf, R. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex. Chem. Commun. 2015, 51, 8425–8428.

    Article  Google Scholar 

  29. He, C.; Zhang, X. H.; Huang, R. F.; Pan, J.; Li, J. Q.; Ling, X. G.; Xiong, Y.; Zhu, X. M. Synthesis of structurally diverse diarylketones through the diarylmethyl sp3 CH oxidation. Tetrahedron Lett. 2014, 55, 4458–4462.

    Article  Google Scholar 

  30. Chebolu, R.; Bahuguna, A.; Sharma, R.; Mishra, V. K.; Ravikumar, P. C. An unusual chemoselective oxidation strategy by an unprecedented exploration of an electrophilic center of DMSO: A new facet to classical DMSO oxidation. Chem. Commun. 2015, 51, 15438–15441.

    Article  Google Scholar 

  31. Wang, H. Q.; Wang, Z.; Huang, H. C.; Tan, J. J.; Xu, K. KOtBu-promoted oxidation of (hetero)benzylic Csp3–H to ketones with molecular oxygen. Org. Lett. 2016, 18, 5680–5683.

    Article  Google Scholar 

  32. Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.

    Article  Google Scholar 

  33. Zhang, Q.; Cai, S. F.; Li, L. S.; Chen, Y. F.; Rong, H. P.; Niu, Z. Q.; Liu, J. J.; He, W.; Li, Y. D. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticlecatalyzed tandem aerobic oxidation. ACS Catal. 2013, 3, 1681–1684.

    Article  Google Scholar 

  34. Balfour, J. A.; McTavish, D.; Heel, R. C. Fenofibrate: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 1990, 40, 260–290.

    Article  Google Scholar 

  35. McKeage, K.; Keating, G. M. Fenofibrate: A review of its use in dyslipidaemia. Drugs 2001, 71, 1917–1946.

    Article  Google Scholar 

  36. Krysiak, R.; Gdula-Dymek, A.; Bachowski, R.; Okopien, B. Pleiotropic effects of atorvastatin and fenofibrate in metabolic syndrome and different types of pre-diabetes. Diabetes Care 2010, 33, 2266–2270.

    Article  Google Scholar 

  37. Ahlburg, A.; Lindhardt, A. T.; Taaning, R. H.; Modvig, A. E.; Skrydstrup, T. An air-tolerant approach to the carbonylative Suzuki-Miyaura coupling: Applications in isotope labeling. J. Org. Chem. 2013, 78, 10310–10318.

    Article  Google Scholar 

  38. Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929–7933.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21371107 and 21625104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifang Guo or Wei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhang, Q., Li, H. et al. Ag/C nanoparticles catalysed aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones. Nano Res. 10, 3261–3267 (2017). https://doi.org/10.1007/s12274-017-1676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1676-2

Keywords

Navigation