Skip to main content
Log in

Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

ZnO has received tremendous attention for applications in photoelectrochemical water splitting, photocatalysis, and photovoltaic devices. However, the photoelectric conversion efficiency of ZnO is limited by the rapid recombination of photoexcited electron–hole pairs and the wide band gap, which allows only a small fraction of the solar spectrum to be absorbed. Recently, substantial research efforts have aimed to increase the photoelectric conversion efficiency across the entire ultraviolet–visible (UV–vis) spectrum by coupling semiconductors such as ZnO with noble metal nanoparticles (NPs). In this study, we compare the performance of a pure ZnO film and ZnO/Ag nanostructured films as photoelectrodes.We show that under broad-spectrum UV–vis illumination, the photocurrent generated in the ZnO/Ag three-dimensional (3D) nanostructured films increases 3.75 times relative to the photocurrent generated in the pure ZnO films. We attribute the high photocurrent to the electric-field enhancement associated with the localized surface plasmon resonance of the Ag NPs, which are present at a high density in the 3D nanostructured films, and to the creation of photoexcited hot electrons in Ag that are transferred to ZnO, promoting electron–hole pair separation. We propose a mechanism to explain the observed enhancement of the photoelectric conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

    Article  Google Scholar 

  2. Ren, S. T.; Wang, B. Y.; Zhang, H.; Ding, P.; Wang, Q. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 4066–4074.

    Article  Google Scholar 

  3. Ghosh, A.; Guha, P.; Samantara, A. K.; Jena, B. K.; Bar, R.; Ray, S.; Satyam, P. V. Simple growth of faceted Au−ZnO hetero-nanostructures on silicon substrates (nanowires and triangular nanoflakes): A shape and defect driven enhanced photocatalytic performance under visible light. ACS Appl. Mater. Interfaces 2015, 7, 9486–9496.

    Article  Google Scholar 

  4. Geng, W.; Wu, L.; Li, J. H.; Choi, J.; Jeong, Y.; Choi, S. Y.; Park, J. B.; Ryu, M. K.; Lee, K. V-shaped tin oxide nanostructures featuring a broad photocurrent signal: An effective visible-light-driven photocatalyst. Small 2006, 2, 1436–1439.

    Article  Google Scholar 

  5. Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  Google Scholar 

  6. Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

    Article  Google Scholar 

  7. García de Arquer, F. P.; Mihi, A.; Kufer, D.; Konstantatos, G. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 2013, 7, 3581–3588.

    Article  Google Scholar 

  8. Zhao, B.; Jiang, M. M.; Zhao, D. X.; Li, Y.; Wang, F.; Shen, D. Z. Electrically driven plasmon mediated energy transfer between ZnO microwires and Au nanoparticles. Nanoscale 2015, 7, 1081–1089.

    Article  Google Scholar 

  9. Chen, H. J.; Liu G.; Wang, L. Z. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5, 10852.

    Article  Google Scholar 

  10. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.

    Article  Google Scholar 

  11. Demel, J.; Pleštil, J.; Bezdička, P.; Janda, P.; Klementová, M.; Lang, K. Few-layer ZnO nanosheets: preparation, properties, and films with exposed {001} facets. J. Phys. Chem. C 2011, 115, 24702–24706.

    Article  Google Scholar 

  12. Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.

    Article  Google Scholar 

  13. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  14. Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property. J. Phys. Chem. C, 2008, 112, 10773–10777.

    Article  Google Scholar 

  15. Wang, H.; Bai, Y. S.; Zhang, H.; Zhang, Z. H.; Li, J. H.; Guo, L. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C 2010, 114, 16451–16455.

    Article  Google Scholar 

  16. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  17. Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407–413.

    Article  Google Scholar 

  18. Wang, F.; Seo, J. H.; Li, Z. D.; Kvit, A. V.; Ma, Z. Q.; Wang, X. D. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. ACS Appl. Mater. Interfaces 2014, 6, 1288–1293.

    Article  Google Scholar 

  19. Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843.

    Article  Google Scholar 

  20. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

    Article  Google Scholar 

  21. Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J. W. P. Photocurrent enhancement in polythiopheneand alkanethiol-modified ZnO solar cells. Adv. Mater. 2008, 20, 4755–4759.

    Article  Google Scholar 

  22. Ruankham, P.; Macaraig, L.; Sagawa, T.; Nakazumi, H.; Yoshikawa, S. Surface modification of ZnO nanorods with small organic molecular dyes for polymer-inorganic hybrid solar cells. J. Phys. Chem. C 2011, 115, 23809–23816.

    Article  Google Scholar 

  23. Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112–11120.

    Article  Google Scholar 

  24. Gao, J. B.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J.; Beard, M. C. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 2011, 11, 1002–1008.

    Article  Google Scholar 

  25. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    Article  Google Scholar 

  26. Schuller, J. A.; Barnard, E. S.; Cai, W. H.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.

    Article  Google Scholar 

  27. Zhou, Z. K.; Peng, X. N.; Yang, Z. J.; Zhang, Z. S.; Li, M.; Su, X. R.; Zhang, Q.; Shan, X. Y.; Wang, Q. Q.; Zhang, Z. Y. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. Nano Lett. 2011, 11, 49–55.

    Article  Google Scholar 

  28. Wang, Y. L.; Nan, F.; Liu, X. L.; Zhou, L.; Peng, X. N.; Zhou, Z. K.; Yu, Y.; Hao, Z. H.; Wu, Y.; Zhang, W. et al. Plasmon-enhanced light harvesting of chlorophylls on nearpercolating silver films via one-photon anti-stokes upconversion. Sci. Rep. 2013, 3, 1861.

    Article  Google Scholar 

  29. Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for highperformance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.

    Article  Google Scholar 

  30. Zhang, Z. F.; Li, Y.; Li, K. F.; Chen, K.; Yang, Y. Z.; Liu, X. G.; Jia, H. S.; Xu, B. S. Growth and characterization of flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. J. Mater. Sci. 2014, 49, 2347–2354.

    Article  Google Scholar 

  31. Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824–1828.

    Article  Google Scholar 

  32. He, X.; Yue, C.; Zang, Y. S.; Yin, J.; Sun, S. B.; Li, J.; Kang, J. Y. Multi-hot spot configuration on urchin-like Ag nanoparticle/ZnO hollow nanosphere arrays for highly sensitive SERS. J. Mater. Chem. A. 2013, 1, 15010–15015.

    Article  Google Scholar 

  33. Xie, Y. L.; Yang, S. K.; Mao, Z. M.; Li, P.; Zhao, C. L.; Cohick, Z.; Huang, P. H.; Huang, T. J. In situ fabrication of 3D Ag@ZnO nanostructures for micro fluidic surfaceenhanced Raman scattering systems. ACS Nano. 2014, 8, 12175–12184.

    Article  Google Scholar 

  34. Huang, J.; Chen, F.; Zhang, Q.; Zhan, Y. H.; Ma, D. Y.; Xu, K. W.; Zhao, Y. X. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as highperformance surface-enhanced Raman scattering substrates. ACS Appl. Mater. Interfaces 2015, 7, 5725–5735.

    Article  Google Scholar 

  35. Zhang, D. Y.; Wang, P. P.; Murakami, R. I.; Song, X. P. Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl. Phys. Lett. 2010, 96, 233114.

    Article  Google Scholar 

  36. Zhang, K.; Wang, H.; Gan, Z. K.; Zhou, P. Q.; Mei, C. L.; Huang X.; Xia Y. X. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/ Ag/Si nanostructure. Sci. Rep. 2016, 6, 22906.

    Article  Google Scholar 

  37. Fang, Y. R.; Jiao, Y.; Xiong, K. L.; Ogier, R.; Yang, Z. J.; Gao, S. W.; Dahlin, A. B.; Käll, M. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Lett. 2015, 15, 4059–4065.

    Article  Google Scholar 

  38. Zhan, Z. Y.; An, J. N.; Zhang, H. C.; Hansen, R. V.; Zheng, L. X. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl. Mater. Interfaces 2014, 6, 1139–1144.

    Article  Google Scholar 

  39. Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 2011, 11, 5548–5552.

    Article  Google Scholar 

  40. Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 2010, 1, 2031–2036.

    Article  Google Scholar 

  41. Kang, Z.; Yan, X. Q.; Wang, Y. F.; Zhao, Y. G.; Bai, Z. M.; Liu, Y. C.; Zhao, K.; Cao, S. Y.; Zhang, Y. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344–352.

    Article  Google Scholar 

  42. Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129–4133.

    Article  Google Scholar 

  43. Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61434002 and 11611540333), the Special Funds of Shanxi Scholars Program, the National key Research and Development Plan of China, the Ministry of Education of China (No. IRT1156), and the Sanjin Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Xu.

Electronic supplementary material

12274_2017_1663_MOESM1_ESM.pdf

Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Liu, Y., Yan, Y. et al. Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. Nano Res. 11, 520–529 (2018). https://doi.org/10.1007/s12274-017-1663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1663-7

Keywords

Navigation