Skip to main content
Log in

Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A simple yet general one-step solvothermal method is applied to synthesize sub-7 nm monodispersed single-crystal NiPt2 nanoparticles (NPs) with the morphology of truncated octahedrons in the alloying state of disordered atomic arrangements. The effective magnetic moments of these NPs exhibit an anomalous temperature dependency, increasing from approximately 0.9 μB/atom at 15 K to 1.9 μB/atom at 300 K. This is an increase by a factor of more than three compared with bulk Ni. On the basis of experiments involving X-ray absorption near-edge spectroscopy of the L3 edge for Pt and density functional theory calculations, the observed novel magnetism enhancement and its anomalous temperature dependence are attributed to the electron transfer arising from the thermal-activation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  Google Scholar 

  2. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  3. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  4. Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031–1036.

    Article  Google Scholar 

  5. Dubau, L.; Nelayah, J.; Moldovan, S.; Ersen, O.; Bordet, P.; Drnec, J.; Asset, T.; Chattot, R.; Maillard, F. Defects do catalysis: CO monolayer oxidation and oxygen reduction reaction on hollow PtNi/C nanoparticles. ACS Catal. 2016, 6, 4673–4684.

    Article  Google Scholar 

  6. Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.; Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat. Mater. 2009, 8, 940–946.

    Article  Google Scholar 

  7. Chiang, I. C.; Chen, D. H. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv. Funct. Mater. 2007, 17, 1311–1316.

    Article  Google Scholar 

  8. Beille, J.; Bloch, D.; Besnus, M. J. Itinerant ferromagnetism and susceptibility of nickel-platinum alloys. J. Phys. F: Metal. Phys. 1974, 4, 1275–1284.

    Article  Google Scholar 

  9. Parra, R. E.; Cable, J. W. Neutron study of magneticmoment distribution in Ni-Pt alloys. Phys. Rev. B 1980, 21, 5494–5504.

    Article  Google Scholar 

  10. Alberts, H. L.; Beille, J.; Bloch, D.; Wohlfarth, E. P. Ferromagnetic properties at high fields and high-pressures of nickel-platinum alloys near the critical concentration for ferromagnetism. Phys. Rev. B 1974, 9, 2233–2243.

    Article  Google Scholar 

  11. Kumar, U.; Mukhopadhyay, P. K.; Sanyal, B.; Eriksson, O.; Nordblad, P.; Paudyal, D.; Tarafder, K.; Mookerjee, A. Experimental and theoretical study of annealed Ni-Pt alloys. Phys. Rev. B 2006, 74, 064401.

    Article  Google Scholar 

  12. Kumar, U.; Padmalekha, K. G.; Mukhopadhyay, P. K.; Paudyal, D.; Mookerjee, A. Magnetic transition in NiPt alloy systems: Experiment and theory. J. Magn. Magn. Mater. 2005, 292, 234–240.

    Article  Google Scholar 

  13. Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1–x nanoparticles with tuneable composition and size. Small 2007, 3, 271–274.

    Article  Google Scholar 

  14. Zitoun, D.; Respaud, M.; Fromen, M. C.; Casanove, M. J.; Lecante, P.; Amiens, C.; Chaudret, B. Magnetic enhancement in nanoscale CoRh particles. Phys. Rev. Lett. 2002, 89, 037203.

    Article  Google Scholar 

  15. Zhang, D. F.; Zhang, Q.; Huang, W. F.; Guo, L.; Chen, W. M.; Chu, W. S.; Chen, C. P.; Wu, Z. Y. Low-temperature fabrication of Au-Co cluster mixed nanohybrids with high magnetic moment of Co. ACS Appl. Mater. Interfaces 2012, 4, 5643–5649.

    Article  Google Scholar 

  16. Dupuis, V.; Khadra, G.; Linas, S.; Hillion, A.; Gragnaniello, L.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F.; Otero, E. et al. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J. Magn. Magn. Mater. 2015, 383, 73–77.

    Article  Google Scholar 

  17. Bhagat, S. M.; Lucas, C. W., Jr. New technique for measurement of the temperature dependence of the saturation magnetization-nickel. Rev. Sci. Instrum. 1968, 39, 255–256.

    Article  Google Scholar 

  18. Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.

    Article  Google Scholar 

  19. Neugebauer, C. A. Temperature dependence of the saturation magnetization of nickel films of thickness less than 100a. J. Appl. Phys. 1960, 31, S152–S153.

    Article  Google Scholar 

  20. Huang, L. F.; Shan, A. X.; Li, Z. P.; Chen, C. P.; Wang, R. M. Phase formation, magnetic and optical properties of epitaxially grown icosahedral Au@Ni nanoparticles with ultrathin shells. CrystEngComm 2013, 15, 2527–2531.

    Article  Google Scholar 

  21. Billas, I. M. L.; Châtelain, A.; De Heer, W. A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 1994, 265, 1682–1684.

    Article  Google Scholar 

  22. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  23. Wilhelm, F.; Poulopoulos, P.; Srivastava, P.; Wende, H.; Farle, M.; Baberschke, K.; Angelakeris, M.; Flevaris, N. K.; Grange, W.; Kappler, J. P. et al. Magnetic anisotropy energy and the anisotropy of the orbital moment of Ni in Ni/Pt multilayers. Phys. Rev. B 2000, 61, 8647–8650.

    Article  Google Scholar 

  24. Mandal, M.; Kundu, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy. Chem. Mater. 2003, 15, 3710–3715.

    Article  Google Scholar 

  25. He, L.; Zheng, W. Z.; Zhou, W.; Du, H. L.; Chen, C. P.; Guo, L. Size-dependent magnetic properties of nickel nanochains. J. Phys.: Condens. Matter 2007, 19, 036216.

    Google Scholar 

  26. Zhou, W.; He, L.; Cheng, R.; Guo, L.; Chen, C. P.; Wang, J. L. Synthesis of Ni nanochains with various sizes: The magnetic and catalytic properties. J. Phys. Chem. C 2009, 113, 17355–17358.

    Article  Google Scholar 

  27. Zhao, F. F.; Liu, C.; Wang, P.; Huang, S. P.; Tian, H. P. First-principles investigations of the structural, electronic, and magnetic properties of Pt13–n Nin clusters. J. Alloys Compd. 2013, 577, 669–676.

    Article  Google Scholar 

  28. Nlebedim, I. C.; Melikhov, Y.; Jiles, D. C. Temperature dependence of magnetic properties of heat treated cobalt ferrite. J. Appl. Phys. 2014, 115, 043903.

    Article  Google Scholar 

  29. Chen, W. M.; Chen, C. P.; Guo, L. Field-dependent lowfield enhancement in effective paramagnetic moment with nanoscaled Co3O4. J. Appl. Phys. 2010, 108, 073907.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. Lirong Zheng for his XANES experimental support at the XAFS station in 1W1B beamline of BSRF and useful discussion. This work is supported by the National Natural Science Foundation of China (Nos. 11674008, 11674023, 21576008, 91334203, 51371015 and 51331002), the Beijing Natural Science Foundation (No. 2142018) and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chinping Chen, Daojian Cheng, Richeng Yu or Rongming Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, A., Chen, C., Zhang, W. et al. Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles. Nano Res. 10, 3238–3247 (2017). https://doi.org/10.1007/s12274-017-1643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1643-y

Keywords

Navigation