Skip to main content
Log in

Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of a safe and effective adjuvant that amplifies the immune response to an antigen is important for vaccine delivery. In this study, we developed pristine mesoporous carbon hollow spheres as high-capacity vaccine protein nanocarriers and safe adjuvants for boosting the immune response. Mono-dispersed invaginated mesostructured hollow carbon spheres (IMHCSs) have an average particle size of ∼200 nm, large pore size of 15 nm, and high pore volume of 2.85 cm3·g–1. IMHCSs exhibited a very high loading capacity (1,040 μg·mg–1) towards ovalbumin (OVA, a model antigen), controlled OVA release behavior, excellent safety profile to normal cells, and high antigen delivery efficacy towards macrophages. In vivo immunization studies in mice demonstrated that OVA-loaded IMHCSs induced a 3-fold higher IgG response compared to a traditional adjuvant QuilA used in veterinary vaccine research. OVA delivered by IMHCSs induced a higher IgG1 concentration than IgG2a, indicating a T-helper 2 (Th2)-polarized response. Interferon-γ and interleukin-4 concentration analysis revealed both T-helper 1 (Th1) and Th2 immune responses induced by OVA-loaded IMHCSs. IMHCSs are safer adjuvants than QuilA. Our study revealed that pure IMHCSs without further functionalization can be used as a safe adjuvant for promoting Th2-biased immune responses for vaccine delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrovsky, N.; Aguilar, J. C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496.

    Article  Google Scholar 

  2. Marrack, P.; McKee, A. S.; Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293.

    Article  Google Scholar 

  3. Reed, S. G.; Orr, M. T.; Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608.

    Article  Google Scholar 

  4. Amanna, I. J.; Slifka, M. K. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 2011, 411, 206–215.

    Article  Google Scholar 

  5. Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 1997, 18, 263–266.

    Article  Google Scholar 

  6. Vogel, F. R.; Powell, M. F. A compendium of vaccine adjuvants and excipients. In Vaccine Design: The Subunit and Adjuvant Approach. Powell, M. F.; Newman, M. J., Eds.; Springer: US, 1995; pp 141–228.

    Chapter  Google Scholar 

  7. Singh, M.; O’Hagan, D. Advances in vaccine adjuvants. Nat. Biotechnol. 1999, 17, 1075–1081.

    Article  Google Scholar 

  8. Relyveld, E. H.; Bizzini, B.; Gupta, R. K. Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 1998, 16, 1016–1023.

    Article  Google Scholar 

  9. Gupta, R. K. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 155–172.

    Article  Google Scholar 

  10. Freund, J.; Casals, J.; Hosmer, E. P. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc. Soc. Exp. Biol. Med. 1937, 37, 509–513.

    Article  Google Scholar 

  11. Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C. X.; Mitter, N.; Yu, C. Z.; Middelberg, A. P. J. Nanoparticle vaccines. Vaccine 2014, 32, 327–337.

    Article  Google Scholar 

  12. Smith, D. M.; Simon, J. K.; Baker, J. R., Jr. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013, 13, 592–605.

    Article  Google Scholar 

  13. Oyewumi, M. O.; Kumar, A.; Cui, Z. R. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010, 9, 1095–1107.

    Article  Google Scholar 

  14. Gregory, A. E.; Titball, R.; Williamson, D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013, 3, 13.

    Article  Google Scholar 

  15. Zhang, W. F.; Wang, L. Y.; Liu, Y.; Chen, X. M.; Liu, Q.; Jia, J. L.; Yang, T. Y.; Qiu, S. H.; Ma, G. H. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials 2014, 35, 6086–6097.

    Article  Google Scholar 

  16. Mahony, D.; Cavallaro, A. S.; Stahr, F.; Mahony, T. J.; Qiao, S. Z.; Mitter, N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 2013, 9, 3138–3146.

    Article  Google Scholar 

  17. Yan, S. Y.; Rolfe, B. E.; Zhang, B.; Mohammed, Y. H.; Gu, W. Y.; Xu, Z. P. Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. Biomaterials 2014, 35, 9508–9516.

    Article  Google Scholar 

  18. Wang, T. Y.; Zou, M. J.; Jiang, H. T.; Ji, Z. S.; Gao, P.; Cheng, G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 2011, 44, 653–659.

    Article  Google Scholar 

  19. Giddam, A. K.; Zaman, M.; Skwarczynski, M.; Toth, I. Liposome-based delivery system for vaccine candidates: Constructing an effective formulation. Nanomedicine 2012, 7, 1877–1893.

    Article  Google Scholar 

  20. Vasiliev, Y. M. Chitosan-based vaccine adjuvants: Incomplete characterization complicates preclinical and clinical evaluation. Expert Rev. Vaccines 2015, 14, 37–53.

    Article  Google Scholar 

  21. Tobío, M.; Nolley, J.; Guo, Y. Y.; McIver, J.; Alonso, M. J. A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle. Pharm. Res. 1999, 16, 682–688.

    Article  Google Scholar 

  22. Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials: An introduction. In Handbook of Immunological Properties of Engineered Nanomaterials. Dobrovolskaia, M. A.; McNeil, S. E., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2013; pp 1–23.

    Chapter  Google Scholar 

  23. Moyano, D. F.; Goldsmith, M.; Solfiell, D. J.; Landesman-Milo, D.; Miranda, O. R.; Peer, D.; Rotello, V. M. Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 2012, 134, 3965–3967.

    Article  Google Scholar 

  24. Kobayashi, K.; Wei, J. J.; Iida, R.; Ijiro, K.; Niikura, K. Surface engineering of nanoparticles for therapeutic applications. Polym. J. 2014, 46, 460–468.

    Article  Google Scholar 

  25. Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 2005, 571–577.

    Google Scholar 

  26. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano. Res. 2009, 2, 85–120.

    Article  Google Scholar 

  27. Parra, J.; Abad-Somovilla, A.; Mercader, J. V.; Taton, T. A.; Abad-Fuentes, A. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Control. Release 2013, 170, 242–251.

    Article  Google Scholar 

  28. Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke, J.; Briand, J. P.; Prato, M.; Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 2003, 125, 6160–6164.

    Article  Google Scholar 

  29. Kim, T.-W.; Chung, P.-W.; Slowing, I. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S. Y. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 2008, 8, 3724–3727.

    Article  Google Scholar 

  30. Wang, J.; Hu, Z. B.; Xu, J. X.; Zhao, Y. L. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 2014, 6, e84.

    Article  Google Scholar 

  31. Zhang, H. W.; Yu, M. H.; Song, H.; Noonan, O.; Zhang, J.; Yang, Y. N.; Zhou, L.; Yu, C. Z. Self-organized mesostructured hollow carbon nanoparticles via a surfactant-free sequential heterogeneous nucleation pathway. Chem. Mater. 2015, 27, 6297–6304.

    Article  Google Scholar 

  32. Liu, H. L.; Zhang, Y. L.; Yang, N.; Zhang, Y. X.; Liu, X. Q.; Li, C. G.; Zhao, Y.; Wang, Y. G.; Zhang, G. G.; Yang, P. et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling. Cell Death Dis. 2011, 2, e159.

    Article  Google Scholar 

  33. Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

    Article  Google Scholar 

  34. Demento, S. L.; Cui, W. G.; Criscione, J. M.; Stern, E.; Tulipan, J.; Kaech, S. M.; Fahmy, T. M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012, 33, 4957–4964.

    Article  Google Scholar 

  35. Wang, T. Y.; Jiang, H. T.; Zhao, Q. F.; Wang, S. L.; Zou, M. J.; Cheng, G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: Effect of silica architecture on immunological properties. Int. J. Pharm. 2012, 436, 351–358.

    Article  Google Scholar 

  36. Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 2006, 325, 172–179.

    Article  Google Scholar 

  37. Du, J.; Wang, S. T.; You, H.; Zhao, X. S. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 2013, 36, 451–462.

    Article  Google Scholar 

  38. Gupta, R. K.; Relyveld, E. H.; Lindblad, E. B.; Bizzini, B.; Ben-Efraim, S.; Gupta, C. K. Adjuvants—A balance between toxicity and adjuvanticity. Vaccine 1993, 11, 293–306.

    Article  Google Scholar 

  39. Wang, J.; Hu, Z. B.; Xu, J. X.; Zhao, Y. L. Therapeutic applications of low-toxicity spherical nanocarbon materials.NPG Asia Mater. 2014, 6, e84.

    Article  Google Scholar 

  40. Fiorito, S.; Serafino, A.; Andreola, F.; Togna, A.; Togna, G. Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 591–599.

    Article  Google Scholar 

  41. Wang, C.; Li, P.; Liu, L. L.; Pan, H.; Li, H. C.; Cai, L. T.; Ma, Y. F. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 2016, 79, 88–100.

    Article  Google Scholar 

  42. Kalish, R. S. Antigen processing: The gateway to the immune response. J. Am. Acad. Dermatol. 1995, 32, 640–652.

    Article  Google Scholar 

  43. Vyas, J. M.; Van der Veen, A. G.; Ploegh, H. L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 2008, 8, 607–618.

    Article  Google Scholar 

  44. Mantegazza, A. R.; Magalhaes, J. G.; Amigorena, S.; Marks, M. S. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013, 14, 135–152.

    Article  Google Scholar 

  45. Rafiq, K.; Bergtold, A.; Clynes, R. Immune complex–mediated antigen presentation induces tumor immunity. J. Clin. Invest. 2002, 110, 71–79.

    Article  Google Scholar 

  46. Gu, L.; Ruff, L. E.; Qin, Z. T.; Corr, M.; Hedrick, S. M.; Sailor, M. J. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv. Mater. 2012, 24, 3981–3987.

    Article  Google Scholar 

  47. Yuba, E. Design of pH-sensitive polymer-modified liposomes for antigen delivery and their application in cancer immunotherapy. Polym. J. 2016, 48, 761–771.

    Article  Google Scholar 

  48. Seong, S. Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses.Nat. Rev. Immunol. 2004, 4, 469–478.

    Article  Google Scholar 

  49. Vogel, F. R. Improving vaccine performance with adjuvants. Clin. Infect. Dis. 2000, 30, S266–S270.

    Article  Google Scholar 

  50. Elgueta, R.; Benson, M. J.; De Vries, V. C.; Wasiuk, A.; Guo, Y. X.; Noelle, R. J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172.

    Article  Google Scholar 

  51. Kaiko, G. E.; Horvat, J. C.; Beagley, K. W.; Hansbro, P. M. Immunological decision-making: How does the immune system decide to mount a helper T-cell response? Immunology 2008, 123, 326–338.

    Article  Google Scholar 

  52. Vella, A. T.; Dow, S.; Potter, T. A.; Kappler, J.; Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 3810–3815.

    Article  Google Scholar 

  53. Sun, B. B.; Ji, Z. X.; Liao, Y. P.; Wang, M. Y.; Wang, X.; Dong, J. Y.; Chang, C. H.; Li, R. B.; Zhang, H. Y.; Nel, A. E. et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 2013, 7, 10834–10849.

    Article  Google Scholar 

  54. Fujimaki, H.; Ozawa, M.; Imai, T.; Kubota, K.; Watanabe, N. Adjuvant effects of aluminum silicate on IgE and IgG1 antibody production in mice. Int. Arch. Allergy Immunol. 1984, 75, 351–356.

    Article  Google Scholar 

  55. Whitekus, M. J.; Li, N.; Zhang, M.; Wang, M. Y.; Horwitz, M. A.; Nelson, S. K.; Horwitz, L. D.; Brechun, N.; Diaz-Sanchez, D.; Nel, A. E. Thiol antioxidants inhibit the adjuvant effects of aerosolized diesel exhaust particles in a murine model for ovalbumin sensitization.J. Immunol. 2002, 168, 2560–2567.

    Article  Google Scholar 

  56. Liu, Q.; Jia, J. L.; Yang, T. Y.; Fan, Q. Z.; Wang, L. Y.; Ma, G. H. Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small 2016, 12, 1744–1757.

    Article  Google Scholar 

  57. Kono, H.; Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008, 8, 279–289.

    Article  Google Scholar 

  58. Chung, E. Y.; Kim, S. J.; Ma, X. J. Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res. 2006, 16, 154–161.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the support from Australian Research Council, the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland, and the Queensland node of the Australian National Fabrication Facility (ANFF). We appreciate the help of Prof. Ian Fraser and Dr. Stacey Cole for the use of ELISPOT reader at Diamantina Institute and Translational Research Institute at The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neena Mitter or Chengzhong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambhrunkar, M., Yu, M., Zhang, H. et al. Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response. Nano Res. 11, 370–382 (2018). https://doi.org/10.1007/s12274-017-1640-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1640-1

Keywords

Navigation