Skip to main content
Log in

Selenium-functionalized metal-organic frameworks as enzyme mimics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of artificial enzyme mimics has been rapidly growing in recent years, and it is attracting increasing attention owing to their remarkable advantages over natural enzymes. Herein, we developed a general and facile method to fabricate efficient glutathione peroxidase (GPx) mimics by grafting selenium-containing molecules (phenylselenylbromide, PhSeBr) to a Zr(IV)-based UiO-66-NH2 framework. In the presence of glutathione (GSH) serving as substrate, the fabricated UiO-66-Se catalysts can catalyze the reduction of hydroperoxides. The as-prepared UiO-66-Se systems show good catalytic activity over three cycles. These high-efficiency GPx mimic metal-organic frameworks (MOFs) are endowed with excellent thermal and structural stability, providing a promising avenue for the development of artificial enzyme mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, R.; Beg, Q. K.; Lorenz, P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2002, 59, 15–32.

    Article  Google Scholar 

  2. Betancor, L.; Luckarift, H. R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008, 26, 566–572.

    Article  Google Scholar 

  3. Hou, C.; Wang, Y.; Ding, Q. H.; Jiang, L.; Li, M.; Zhu, W. W.; Pan, D.; Zhu, H.; Liu, M. Z. Facile synthesis of enzymeembedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 2015, 7, 18770–18779.

    Article  Google Scholar 

  4. Huang, Y. Q.; Guan, R.; Huang, M. Z. Study on hydrolysis of macromolecular gelatin with enzymes in combination mode. Chinese J. Polym. Sci. 2004, 22, 599–602.

    Google Scholar 

  5. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268.

    Article  Google Scholar 

  6. Reedy, C. J.; Gibney, B. R. Heme protein assemblies. Chem. Rev. 2004, 104, 617–650.

    Article  Google Scholar 

  7. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  8. Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.

    Article  Google Scholar 

  9. Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem., Int. Ed. 1996, 35, 707–724.

    Article  Google Scholar 

  10. Motherwell, W. B.; Bingham, M. J.; Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 2001, 57, 4663–4686.

    Article  Google Scholar 

  11. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–27.

    Article  Google Scholar 

  12. Huang, X.; Liu, X. M.; Luo, Q.; Liu, J. Q.; Shen, J. C. Artificial selenoenzymes: Designed and redesigned. Chem. Soc. Rev. 2011, 40, 1171–1184.

    Article  Google Scholar 

  13. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

    Article  Google Scholar 

  14. Dong, Z. Y.; Luo, Q.; Liu, J. Q. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 2012, 41, 7890–7908.

    Article  Google Scholar 

  15. Su, L. J.; Xiong, Y. H.; Yang, H. G.; Zhang, P.; Ye, F. G. Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J. Mater. Chem. B 2016, 4, 128–134.

    Article  Google Scholar 

  16. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  Google Scholar 

  17. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

    Article  Google Scholar 

  18. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  19. Liu, X. Y.; Wei, W.; Yuan, Q.; Zhang, X.; Li, N.; Du, Y. G.; Ma, G. H.; Yan, C. H.; Ma, D. Apoferritin–CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 2012, 48, 3155–3157.

    Article  Google Scholar 

  20. Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

    Article  Google Scholar 

  21. Zhang, X.; Xu, H. P.; Dong, Z. Y.; Wang, Y. P.; Liu, J. Q.; Shen, J. C. Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 2004, 126, 10556–10557.

    Article  Google Scholar 

  22. Fu, Y.; Chen, J. Y.; Xu, H. P.; Van Oosterwijck, C.; Zhang, X.; Dehaen, W.; Smet, M. Fully-branched hyperbranched polymers with a diselenide core as glutathione peroxidase mimics. Macromol. Rapid Commun. 2012, 33, 798–804.

    Article  Google Scholar 

  23. Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2,2’-ditellurobis(2-deoxy-β-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395–16404.

    Article  Google Scholar 

  24. Xiao, R. Q.; Zhou, L. P.; Dong, Z. Y.; Gao, Y. Z.; Liu, J. Q. A photo-responsive catalytic vesicle with GPx activity. Chin. J. Chem. 2014, 32, 37–43.

    Article  Google Scholar 

  25. Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supra-amphiphiles. Soft Matter 2016, 12, 1192–1199.

    Article  Google Scholar 

  26. Cao, W.; Wang, L.; Xu, H. P. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today 2015, 10, 717–736.

    Article  Google Scholar 

  27. Xu, H. P.; Cao, W.; Zhang, X. Selenium-containing polymers: Promising biomaterials for controlled release and enzyme mimics. Acc. Chem. Res. 2013, 46, 1647–1658.

    Article  Google Scholar 

  28. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

    Article  Google Scholar 

  29. Lin, Y. H.; Li, Z. H.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 2013, 34, 2600–2610.

    Article  Google Scholar 

  30. Dai, Z. H.; Liu, S. H.; Bao, J. C.; Ju, H. X. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem.—Eur. J. 2009, 15, 4321–4326.

    Article  Google Scholar 

  31. Su, L.; Qin, W. J.; Zhang, H. G.; Rahman, Z. U.; Ren, C. L.; Ma, S. D.; Chen, X. G. The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens. Bioelectron. 2015, 63, 384–391.

    Article  Google Scholar 

  32. Zheng, C.; Zheng, A. X.; Liu, B.; Zhang, X. L.; He, Y.; Li, J.; Yang, H. H.; Chen, G. N. One-pot synthesized DNAtemplated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50, 13103–13106.

    Article  Google Scholar 

  33. Artiglia, L.; Agnoli, S.; Paganini, M. C.; Cattelan, M.; Granozzi, G. TiO2@CeOx core–shell nanoparticles as artificial enzymes with peroxidase-like activity. ACS Appl. Mater. Interfaces 2014, 6, 20130–20136.

    Article  Google Scholar 

  34. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  Google Scholar 

  35. Fei, H. H.; Pullen, S.; Wagner, A.; Ott, S.; Cohen, S. M. Functionalization of robust Zr(IV)-based metal–organic framework films via a postsynthetic ligand exchange. Chem. Commun. 2015, 51, 66–69.

    Article  Google Scholar 

  36. Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin, W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.

    Article  Google Scholar 

  37. Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Ferey, G.; Stock, N. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg. Chem. 2009, 48, 3057–3064.

    Article  Google Scholar 

  38. Zhou, W. Q.; Zou, B. H.; Zhang, W. N.; Tian, D. B.; Huang, W.; Huo, F. W. Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs. Nanoscale 2015, 7, 8720–8724.

    Article  Google Scholar 

  39. Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem., Int. Ed. 2010, 49, 5327–5330.

    Article  Google Scholar 

  40. Wang, Z. Q.; Cohen, S. M. Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem. Soc. 2007, 129, 12368–12369.

    Article  Google Scholar 

  41. Song, Y. F.; Cronin, L. Postsynthetic covalent modification of metal–organic framework (MOF) materials. Angew. Chem., Int. Ed. 2008, 47, 4635–4637.

    Article  Google Scholar 

  42. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  43. Chen, Y.; Hoang, T.; Ma, S. Q. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. Inorg. Chem. 2012, 51, 12600–12602.

    Article  Google Scholar 

  44. Chen, Y.; Ma, S. Q. Biomimetic catalysis of metal-organic frameworks. Dalton Trans. 2016, 45, 9744–9753.

    Article  Google Scholar 

  45. Larsen, R. W.; Wojtas, L.; Perman, J.; Musselman, R. L.; Zaworotko, M. J.; Vetromile, C. M. Mimicking heme enzymes in the solid state: Metal-organic materials with selectively encapsulated heme. J. Am. Chem. Soc. 2011, 133, 10356–10359.

    Article  Google Scholar 

  46. Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170.

    Article  Google Scholar 

  47. Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

    Article  Google Scholar 

  48. Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal–organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929.

    Article  Google Scholar 

  49. Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nanoparticle@MOF petalous heterostructures. Chem. Mater. 2014, 26, 1119–1125.

    Article  Google Scholar 

  50. Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew. Chem. 2006, 118, 1418–1421.

    Article  Google Scholar 

  51. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667.

    Article  Google Scholar 

  52. Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124.

    Article  Google Scholar 

  53. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.

    Article  Google Scholar 

  54. Mugesh, G.; du Mont, W. W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001, 101, 2125–2179.

    Article  Google Scholar 

  55. Huang, X. P.; Fang, R. C.; Wang, D. G.; Wang, J.; Xu, H. P.; Wang, Y. P; Zhang, X. Tuning polymeric amphiphilicity via Se–N interactions: Towards one-step double emulsion for highly selective enzyme mimics. Small 2015, 11, 1537–1541.

    Article  Google Scholar 

  56. Huang, X.; Yin, Y. Z.; Liu, J. Q. Design of artificial selenoenzymes based on macromolecular scaffolds. Macromol. Biosci. 2010, 10, 1385–1396.

    Article  Google Scholar 

  57. Wang, Y. P.; Xu, H. P.; Ma, N.; Wang, Z. Q.; Zhang, X.; Liu, J. Q.; Shen, J. C. Block copolymer micelles as matrixes for incorporating diselenide compounds: A model system for a water-soluble glutathione peroxidase mimic fine-tuned by ionic strength. Langmuir 2006, 22, 5552–5555.

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Nos. 21425416 and 21625401), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21421064), the National Natural Science Foundation of China (Nos. 21574065, 21504043 and 21604038), the Jiangsu Provincial Founds for Distinguished Young Scholars (No. BK20140044) and NSF (No. BK20160975), the Program for Outstanding Young Scholars from the Organization Department of the CPC Central Committee, and the National Key Basic Research Program of China (Nos. 2013CB834502 and 2015CB932200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang, Fengwei Huo or Huaping Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Li, H., Xia, B. et al. Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Res. 11, 5761–5768 (2018). https://doi.org/10.1007/s12274-017-1623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1623-2

Keywords

Navigation