Skip to main content
Log in

Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanotechnologies have been exploited to develop safe and effective medicines and pharmaceuticals. In the present study, a novel functional nanomedicine constructed from a bioactive polysaccharide and selenium nanoparticles (SeNPs) was developed. A highly-branched β-(1→3)-D-glucan (AF1) with high anti-tumor activity was used to self-assemble hollow nanofibers with an apparent average diameter of 92 nm; Se nanoparticles were synthesized via the reduction of sodium selenite. The results of light scattering, transmission electron microscopy, and X-ray diffraction demonstrated that the spherical SeNPs with a mean diameter of 46 nm were entrapped in the cavities of the AF1 hollow nanofibers through the formation of Se–O bonds between SeNPs and AF1, leading to the good dispersion and high stability in water for over 16 months. In vitro and in vivo assays indicated that the AF1-Se nanocomposite had higher anti-tumor activities against breast cancer. Furthermore, AF1-Se displayed a broad-spectrum inhibition against human cancers with low half maximal inhibitory concentration (IC50) values and low toxicity to normal cells. Particularly, the inhibition ratio of AF1-Se against MCF-7 cancer cells reached 75% at a concentration of 200 μg·mL–1 with 29 μM Se content, much higher than that by treatment with AF1 alone, suggesting a strong synergic effect and nano impact. Overall, we developed a method for increasing the stability, anti-tumor activity, and safety of SeNPs by wrapping with bioactive polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.

    Article  Google Scholar 

  2. Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G. S.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016, 9, 3003–3017.

    Article  Google Scholar 

  3. Sarparast, M.; Noori, A.; Ilkhani, H.; Bathaie, S. Z.; El-Kady, M. F.; Wang, L. J.; Pham, H.; Marsh, K. L.; Kaner, R. B.; Mousavi, M. F. Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Res. 2016, 9, 3229–3246.

    Article  Google Scholar 

  4. McNeil, S. E. Evaluation of nanomedicines: Stick to the basics. Nat. Rev. Mater. 2016, 1, 16073.

    Article  Google Scholar 

  5. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  Google Scholar 

  6. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA: Cancer J. Clin. 2016, 66, 7–30.

    Google Scholar 

  7. Cruz, L. J.; Que, I.; Aswendt, M.; Chan, A.; Hoehn, M.; Löwik, C. Targeted nanoparticles for the non-invasive detection of traumatic brain injury by optical imaging and fluorine magnetic resonance imaging. Nano Res. 2016, 9, 1276–1289.

    Article  Google Scholar 

  8. Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.

    Article  Google Scholar 

  9. Zhu, X.; Radovic-Moreno, A. F.; Wu, J.; Langer, R.; Shi, J. J. Nanomedicine in the management of microbial infectionoverview and perspectives. Nano Today 2014, 9, 478–498.

    Article  Google Scholar 

  10. Mohanraj, V. J.; Chen, Y. Nanoparticles—A review. Trop. J. Pharm. Res. 2006, 5, 561–573.

    Google Scholar 

  11. Bao, C. C.; Conde, J.; Pan, F.; Li, C.; Zhang, C. L.; Tian, F. R.; Liang, S. J.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 2016, 9, 1043–1056.

    Article  Google Scholar 

  12. Venkataraman, S.; Hedrick, J. L.; Ong, Z. Y.; Yang, C.; Ee, P. L. R.; Hammond, P. T.; Yang, Y. Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliver. Rev. 2011, 63, 1228–1246.

    Article  Google Scholar 

  13. Popova, N. V. Perinatal selenium exposure decreases spontaneous liver tumorogenesis in CBA Mice. Cancer Lett. 2002, 179, 39–42.

    Article  Google Scholar 

  14. Wang, H. L.; Zhang, J. S.; Yu, H. Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Bio. Med. 2007, 42, 1524–1533.

    Article  Google Scholar 

  15. Zhang, J. S.; Wang, X. F.; Xu, T. W. Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicol. Sci. 2008, 101, 22–31.

    Article  Google Scholar 

  16. Liu, W.; Li, X. L.; Wong, Y.-S.; Zheng, W. J.; Zhang, Y. B.; Cao, W. Q.; Chen, T. F. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 2012, 6, 6578–6591.

    Article  Google Scholar 

  17. Vekariya, K. K.; Kaur, J.; Tikoo, K. ERa signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine 2012, 8, 1125–1132.

  18. Kong, L.; Yuan, Q.; Zhu, H. R.; Li, Y.; Guo, Q. Y.; Wang, Q.; Bi, X. L.; Gao, X. Y. The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 2011, 32, 6515–6522.

    Article  Google Scholar 

  19. Hu, H. B.; Li, G. X.; Wang, L.; Watts, J.; Combs, G. F.; Lü, J. X. Methylseleninic acid enhances taxane drug efficacy against human prostate cancer and down-regulates antiapoptotic proteins Bcl-XL and survivin. Clin. Cancer Res. 2008, 14, 1150–1158.

    Article  Google Scholar 

  20. Yu, B.; Li, X. L.; Zheng, W. J.; Feng, Y. X.; Wong, Y.-S.; Chen, T. F. pH-responsive cancer-targeted selenium nanoparticles: A transformable drug carrier with enhanced theranostic effects. J. Mater. Chem. B 2014, 2, 5409–5418.

    Google Scholar 

  21. Huang, Y. Y.; He, L. Z.; Liu, W.; Fan, C. D.; Zheng, W. J.; Wong, Y.-S.; Chen, T. F. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 2013, 34, 7106–7116.

    Article  Google Scholar 

  22. Swierczewska, M.; Han, H. S.; Kim, K.; Park, J. H.; Lee, S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliver. Rev. 2016, 99, 70–84.

    Article  Google Scholar 

  23. Schepetkin, I. A.; Quinn, M. T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317–333.

    Article  Google Scholar 

  24. Wasser, S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biol. 2002, 60, 258–274.

    Article  Google Scholar 

  25. Mizushima, Y.; Yuhki, N.; Hosokawa, M.; Kobayashi, H. Diminution of cyclophosphamide-induced suppression of antitumor immunity by an immunomodulator PS-K and combined therapeutic effects of PS-K and cyclophosphamide on transplanted tumor in rats. Cancer Res. 1982, 42, 5176–5180.

    Google Scholar 

  26. Okamura, K.; Suzuki, M.; Yajima, A.; Chihara, T.; Fujiwara, A.; Fukuda, T.; Goto, S.; Ichinohe, K.; Jimi, S.; Kasamatsu, T. et al. Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer: A randomized controlled study. Cancer 1986, 58, 865–872.

    Article  Google Scholar 

  27. Wu, H. L.; Li, X. L.; Liu, W.; Chen, T. F.; Li, Y. H.; Zheng, W. J.; Man, C. W.-Y.; Wong, M.-K.; Wong, K.-H. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J. Mater. Chem. 2012, 22, 9602–9610.

    Article  Google Scholar 

  28. Nie, T. Q.; Wu, H. J.; Wong, K.-H.; Chen, T. F. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J. Mater. Chem. B 2016, 4, 2351–2358.

    Article  Google Scholar 

  29. Xu, S. Q.; Xu, X. J.; Zhang, L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae. J. Agric. Food Chem. 2012, 60, 3498–3506.

    Article  Google Scholar 

  30. Ping, Z. H.; Xu, H.; Liu, T.; Huang, J. C.; Meng, Y.; Xu, X. J.; Li, W. H.; Zhang, L. Anti-hepatoma activity of the stiff branched ß-D-glucan and effects of molecular weight. J. Mater. Chem. B 2016, 4, 4565–4573.

    Article  Google Scholar 

  31. Xu, S. Q.; Lin, Y.; Huang, J.; Li, Z.; Xu, X. J.; Zhang, L. Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. J. Mater. Chem. A 2013, 1, 4198–4206.

    Article  Google Scholar 

  32. Li, Y. H.; Li, X. L.; Wong, Y.-S.; Chen, T. F.; Zhang, H. B.; Liu, C. R.; Zheng, W. J. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 2011, 32, 9068–9076.

    Article  Google Scholar 

  33. Osborne, C. K.; Coronado, E. B.; Robinson, J. P. Human breast cancer in the athymic nude mouse: Cystostatic effects of long-term antiestrogen therapy. Eur. J. Cancer Clin. Oncol. 1987, 23, 1189–1196.

    Article  Google Scholar 

  34. Xu, H.; Zou, S. W.; Xu, X. J.; Zhang, L. Anti-tumor effect of ß-glucan from Lentinus edodes and the underlying mechanism. Sci. Rep. 2016, 6, 28802.

    Article  Google Scholar 

  35. Yang, S. Y.; Wang, C. F.; Chen, S. Interface-directed assembly of one-dimensional ordered architecture from quantum dots guest and polymer host. J. Am. Chem. Soc. 2011, 133, 8412–8415.

    Article  Google Scholar 

  36. An, C. H.; Tang, K. B.; Liu, X. M.; Qian, Y. T. Large-scale synthesis of high quality trigonal selenium nanowires. Eur. J. Inorg. Chem. 2003, 17, 3250–3255.

    Article  Google Scholar 

  37. Kaur, G.; Iqbal, M.; Bakshi, M. S. Biomineralization of fine selenium crystalline rods and amorphous spheres. J. Phys. Chem. C 2009, 113, 13670–13676.

    Article  Google Scholar 

  38. Li, Q.; Chen, T. F.; Yang, F.; Liu, J.; Zheng, W. J. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine. Mater. Lett. 2010, 64, 614–617.

    Article  Google Scholar 

  39. Duan, H. W.; Kuang, M.; Wang, J.; Chen, D. Y.; Jiang, M. Self-assembly of rigid and coil polymers into hollow spheres in their common solvent. J. Phys. Chem. B 2004, 108, 550–555.

    Article  Google Scholar 

  40. Zhou, K. J.; Li, J. F.; Lu, Y. J.; Zhang, G. Z.; Xie, Z. W.; Wu, C. Re-examination of dynamics of polyeletrolytes in salt-free dilute solutions by designing and using a novel neutral-charged-neutral reversible polymer. Macromolecules 2009, 42, 7146–7154.

    Article  Google Scholar 

  41. Ma, N. N.; Ma, C.; Li, C. Y.; Wang, T.; Tang, Y. J.; Wang, H. Y.; Mou, X. B.; Chen, Z.; He, N. Y. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J. Nanosci. Nanotechnol. 2013, 13, 6485–6498.

    Article  Google Scholar 

  42. Wang, F.; Wang, Y.-C.; Dou, S.; Xiong, M.-H.; Sun, T.-M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011, 5, 3679–3692.

    Article  Google Scholar 

  43. Chou, T. C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55.

    Article  Google Scholar 

  44. Chou, T. C. The median-effect principle and the combination index for quantification of synergism and antagonism. In Synergism and antagonism in chemotherapy. Chou, T. C.; Rideout, D. C., Eds.; Academic Press: New York,1991; pp 61–89.

    Google Scholar 

  45. Zheng, S. Y.; Li, X. L.; Zhang, Y. B.; Xie, Q.; Wong, Y.-S.; Zheng, W. J.; Chen, T. F. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int. J. Nanomed. 2012, 7, 3939–3949.

    Article  Google Scholar 

  46. Wu, S.-B.; Pang, F.; Wen, Y.; Zhang, H.-F.; Zhao, Z.; Hu, J.-F. Antiproliferative and apoptotic activities of linear furocoumarins from Notopterygium incisum on cancer cell lines. Planta Med. 2010, 76, 82–85.

    Article  Google Scholar 

  47. Cohen, G. M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326, 1–16.

    Article  Google Scholar 

  48. Tajon, C. A.; Seo, D.; Asmussen, J.; Shah, N.; Jun, Y.-W.; Craik, C. S. Sensitive and selective plasmon ruler nanosensors for monitoring the apoptotic drug response in Leukemia. ACS Nano 2014, 8, 9199–9208.

    Article  Google Scholar 

  49. Chen, T. F.; Wong, Y. S. Selenocystine induces caspaseindependent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int. J. Biochem. Cell Biol. 2009, 41, 666–676.

    Article  Google Scholar 

  50. Jagtap, P.; Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 2005, 4, 421–440.

    Article  Google Scholar 

  51. Andrabi, S. A.; Dawson, T. M.; Dawson, V. L. Mitochondrial and nuclear cross talk in cell death. Ann. N. Y. Acad. Sci. 2008, 1147, 233–241.

    Article  Google Scholar 

  52. Oltval, Z. N.; Milliman, C. L.; Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 1993, 74, 609–619.

    Article  Google Scholar 

  53. Lu, P.; Sun, H. F.; Zhang, L. X.; Hou, H. L.; Zhang, L.; Zhao, F. Y.; Ge, C.; Yao, M.; Wang, T. P.; Li, J. J. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol. Med. 2012, 18, 1136–1146.

    Article  Google Scholar 

  54. Chen, T.; Wong, Y. S. Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell. Mol. Life Sci. 2008, 65, 2763–2775.

    Article  Google Scholar 

  55. Cairns, R. A.; Harris, I. S.; Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), Major International Joint Research Project (No. 21620102004), the National Natural Science Foundation of China (Nos. 21574102 and 21274114), Special National Key Research and Development Program of China (No. 2016YFD0400202), and New Century Excellent Talents Program of Education Ministry (No. NCET-13-0442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojuan Xu or Lina Zhang.

Electronic Supplementary Material

12274_2017_1590_MOESM1_ESM.pdf

Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, Z., Liu, T., Xu, H. et al. Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities. Nano Res. 10, 3775–3789 (2017). https://doi.org/10.1007/s12274-017-1590-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1590-7

Keywords

Navigation